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ABSTRACT
User interaction data (e.g., click data) has proven to be a
powerful signal for learning-to-rank models in web search.
However, such models require observing multiple interac-
tions across many users for the same query-document pair
to achieve statistically meaningful gains. Therefore, utiliz-
ing user interaction data for improving search over personal,
rather than public, content is a challenging problem. First,
the documents (e.g., emails or private files) are not shared
across users. Second, user search queries are of personal
nature (e.g., “alice’s address”) and may not generalize well
across users. In this paper, we propose a solution to these
challenges, by projecting user queries and documents into a
multi-dimensional space of fine-grained and semantically co-
herent attributes. We then introduce a novel parameteriza-
tion technique to overcome sparsity in the multi-dimensional
attribute space. Attribute parameterization enables effec-
tive usage of cross-user interactions for improving personal
search quality – which is a first such published result, to
the best of our knowledge. Experiments with a dataset de-
rived from interactions of users of one of the world’s largest
personal search engines demonstrate the effectiveness of the
proposed attribute parameterization technique.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
User interactions, personal search, attribute parameteriza-
tion

1. INTRODUCTION
Researchers have been exploring how to successfully lever-

age user interaction data to improve search quality for over
a decade [22, 23]. User interactions most often come in the
form of clicks on links to search results, but may be derived
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Figure 1: Illustrative example of email search results
for query [book order number]. The first two results
are skipped, and the last one is clicked.

from other sources, including page visits [27], cursor tracking
[18], or touch gestures [19]. Such user interaction data has
been shown to be particularly useful for training learning-
to-rank models [2, 6, 27] and click-through rate prediction
[26].

However, even though the use of interactions for improv-
ing search over public search corpora (e.g., the web) is com-
monplace, there is little to no research regarding its use for
search over personal corpora, a.k.a personal search. Personal
search has many real-life applications including (but not lim-
ited to) email search [11, 28], desktop search [15], and, most
recently, on-device search [24] and personal media search [4].

In all of these personal search applications, the use of user
interaction data for improving search quality has been lim-
ited by several factors. First, in the personal search scenario
each user has access only to their own private corpus (e.g.,
emails, documents or multimedia files). This means that
cross-user interactions with the same item, which are com-
mon in web search (i.e., millions of users visiting the same
web page) are non-existent in personal search.

Second, user queries in personal search may not gener-
alize as well as in web search due to the private nature
of the underlying corpora. For instance, one common use
case in email search is retrieving some personal informa-
tion of a correspondent, e.g. [marta schedule], or [from:john
highest-priority] [11]. This is very different from web search,
where the most common queries are navigational [10] and
are issued by multiple users with the same underlying tar-
get page in mind (e.g., [facebook] → facebook.com, [youtube]
→ youtube.com).



To address these factors, we propose a simple yet effective
technique that projects both documents and queries into an
attribute space. Our general approach is independent of the
particular attribute choices, but in general these attributes
have to be semantically coherent and fine-grained enough to
aggregate user interactions with semantically closely related
items.

For instance, consider the email search example in Figure
1. In this case the user skipped the first two results (even
though they might have more terms in common with the
query book order number) and clicked on the last result. It
would be impossible to directly leverage this specific interac-
tion to learn a model for other users given the private nature
of the interaction (since no other user received an email with
the exact same order number). In addition, doing so could
leak potentially sensitive information. To preserve privacy,
terms, n-grams and queries should be frequent, that is, they
should be contained in the private corpora or query logs of
sufficiently many users.

However, by aggregating non-private query and document
attributes (i.e., those that exclude any personal information
such as order number) across a large number of user inter-
actions, it is possible to identify privacy-preserving query-
document associations that can be leveraged to improve
search quality across all users.

Some examples of privacy-preserving query-document as-
sociations that could potentially be learned by aggregat-
ing across a large number of private user interactions in-
clude:

• Term-to-term associations. We can learn that emails
with the frequent term receipt in the subject are likely
to be relevant to queries containing the frequent n-gram
order number.

• Category-to-term associations. We can learn that emails
that are purchase-related are likely to be relevant to
queries containing the frequent n-gram order number.

• Category-to-category associations. We can learn that
finance-related emails are likely to be relevant to queries
classified as investment-related.

• Structure-to-term associations. Using structural tem-
platization approaches recently proposed by Ailon et al.
[3], we can learn that emails from sender usps.com that
correspond to a subject template Your package num-
ber * are more likely to be relevant to a frequent query
[usps] than a subject template USPS package discount
for *! from the same sender.

Hence, instead of looking at specific and potentially pri-
vate user interactions, we instead propose aggregating non-
private query and document attributes across a large number
of user interactions. To the best of our knowledge, this is a
first published work on leveraging user interaction data in a
privacy-preserving manner for personal search.

To summarize, our contributions in this paper are as fol-
lows. First, we introduce a general formal model of user in-
teractions in personal search, which utilizes a novel attribute
parameterization technique. Then, we provide a concrete in-
stantiation of this technique that focuses on email search, a
personal search scenario that received some attention from
the research community in the recent years [11, 28]. Finally,
using a series of experiments conducted on a dataset derived
from search interactions of users of one of the world’s largest

email services, we demonstrate that the attribute parame-
terization technique can lead to substantial search quality
improvements.

2. RELATED WORK
Query-independent static document quality priors have a

long history in web search, including link-based priors [9],
content-based priors [7] and user interaction-based priors
[13, 27]. Interaction priors (e.g., search result clicks or page
visits) are especially relevant to this work, since they allow
to directly incorporate user behavior into the ranking model.
In this work, we extend the notion of document interactions
to attribute interactions, which makes interaction-based pri-
ors feasible in the context of personal search, where docu-
ments are not shared across users.

In this work, we also propose the use of query-dependent
interactions for personal search. Prior work explored the
use of such interactions as features [2] or noisy labels [23]
in learning-to-rank models for web search or as a source for
recommendations of authoritative pages on the query topic
[30]. We expand this prior work by learning attribute-level
interactions, which enables their use in situations where click
data for each 〈query, doc〉 pair is inherently sparse.

Most recently, researchers have started using interactions
such as clicks for deep architectures for learning semantic
matches between queries and documents in web search (see,
e.g., [16, 21]). While some of these deep learning models
can be in principle adapted to personal search, they have
several shortcomings compared to the approach proposed in
this work.

First, these models generally take a “bag-of-words” as-
sumption and are not able to leverage semantic informa-
tion about the document like its category, structure or type.
This is detrimental in the personal search settings where
the retrieved document types may be heterogeneous (e.g.,
documents, slides, spreadsheets or photos in the context of
cloud storage search). Second, due to their complexity, the
amount of data used to train these models is inherently lim-
ited, while the proposed attribute parameterization model
is compact, and can handle a virtually unlimited amount of
data through aggregation. Finally, as some recent work sug-
gests, attribute parameterization can serve as a potentially
useful feature for the wide and deep architectures that were
shown to be useful in large scale retrieval and recommenda-
tion systems [12].

While the findings of this paper are applicable to any per-
sonal search scenario, our experimentation is focused on a
large email corpus. Prior work in email search [11, 15, 28]
recognized the importance of relevance ranking and applying
learning-to-rank for this task. However, to the best of our
knowledge, this work is the first attempt to adapt aggregate
user interactions for improving email search quality.

3. MODEL
Historical user interaction data, as observed in the search

logs, can provide a powerful signal for click-through rate
prediction and learning-to-rank models, since it directly re-
flects user behavior. Most often, user interaction data is
used in search in its most direct form. For instance, if we
observe previous interactions for a given 〈query, doc〉 pair,
we may use it as a query-dependent matching feature in a
learning-to-rank model (e.g., aggregate number of clicks [2]).



Figure 2: System diagram of attribute aggregation and matching process.

Entity notation Entity Set Notation Description
d D Private documents (e.g., emails) in the indexed corpus.
q Q User queries observed in a search log (e.g., [bob’s address]).
adij AD Document attributes (e.g., document category).
aqkl AQ Query attributes (e.g., query terms).

Table 1: Summary of the entity definitions.

Similarly, if we observe that some doc is often clicked across
searches, we may use it as a static a-priori feature of the
document’s overall quality [6, 27].

The case in private search is different. Users usually do
not share documents (e.g., emails or personal files), and
therefore directly aggregating interaction history across users
becomes infeasible. To address this problem, instead of di-
rectly learning from user behavior for a given 〈query, doc〉
pair like in web search, we instead choose to represent doc-
uments and queries using semantically coherent attributes
that are in some way indicative of their content.

This approach is schematically described in Figure 2. Both
documents and queries are projected into an aggregated at-
tribute space, and the matching is done through that inter-
mediate representation, rather than directly. Since we as-
sume that the attributes are semantically meaningful, we ex-
pect that similar personal documents and queries will share
many of the same aggregate attributes, making the attribute
level matches a useful feature in a learning-to-rank model.

In the remainder of this section, we provide a more formal
model of this intuitive relationship between private docu-
ments, queries and aggregates. First, in Section 3.1, we
formally define a quadrilateral structure of bipartite graphs
which is used for feature derivation. Then, we explain how
both query-independent (Section 3.2) and query-dependent
(Section 3.2) features can be derived from this structure, and
used in a learning-to-rank model (Section 3.4). Finally, we
conclude in Section 3.5 by providing some practical attribute
instantiations for an email corpus.

3.1 Attribute graphs
We start the discussion by formally defining in Table 1

four entities that will be used throughout the discussion
that follows: documents, queries and their corresponding
attributes. Most generally, we assume that each document
can be represented using a (potentially sparse) attribute ma-
trix Ad, where i-th row corresponds to an attribute type and
j-th column corresponds to an attribute value. Similarly,
each query can be represented by an attribute matrix Aq,
indexed by (k, l).

In the remainder of this section, we shall assume that the
number of attribute types (matrix rows) is m and n, for

D Q

AD AQ

Figure 3: Quadrilateral structure modeling cross-
entity associations discussed in Section 3.1. Ob-
served or pre-constructed associations are marked
by solid lines, inferred associations are marked by
dashed lines.

document and query attributes, respectively. The attribute
types may be either dense (e.g., distribution over tens of
topical categories) or very sparse (e.g., millions of unique
terms or bigrams). We defer the exact instantiation of these
types to Section 3.5, in order to keep the discussion in this
section as general as possible. We will denote v the maxi-
mum number of allowed attribute values per type (number
of columns in the attribute matrix).

With these definitions in mind, we can define a quadri-
lateral structure that models the association between the
different entities via four bipartite graphs (see Figure 3),
which we formally define next.

3.1.1 Query-document graph
The query-document graph models the interactions be-

tween queries and documents, as observed in some histori-
cal search log. The bipartite graph is represented by a triple
GQD = (Q,D, EQD), such that the nodes are queries and
documents and the edges in the edge set EQD are parame-
terized by tuples of the form

e(q, d) = 〈γo(q, d), γc(q, d)〉. (1)

Parameterization functions γo(a, b) and γc(a, b) indicate that
entities a and b were observed or clicked in the same search
session, respectively. As we show next, these functions can
be expanded beyond queries and documents.



3.1.2 Document-attribute graph
The document-attribute graph models the relationship be-

tween documents and some attribute set (e.g., categories or
terms). In this paper, we assume that this relationship is
pre-constructed and fixed, as described in more detail in
Section 3.5. Formally, the bipartite graph is represented
by a triple GD = (D,AD, ED), and the edges are indicator
functions of the form1

e(d, adij) =

{
1 d is associated with attribute adij
0 else.

(2)

3.1.3 Query-attribute graph
Similarly to the document-attribute graph presented above,

the query-attribute graph models a fixed relationship be-
tween a query and some attribute set (e.g., query terms or
annotations). Formally, the bipartite graph is represented
by a triple GQ = (Q,AQ, EQ), and the edges are indicator
functions of the form

e(q, aqkl) =

{
1 q is associated with attribute aqkl
0 else.

(3)

3.1.4 Attribute-attribute graph
This graph models cross-attribute interactions between

the document and the query attributes. While these inter-
actions are never directly observed in the historical search
logs, they can be inferred using a combination of the three
bipartite graphs discussed above. Formally, the attribute
graph is represented by a triple GA = (AQ,AD, EA), and
edges are parameterized as

e(aqkl, a
d
ij) =

∑
q:e(q,a

q
kl

)=1

∑
d:e(d,ad

ij)=1

e(q, d)

= 〈γo(aqkl, a
d
ij), γc(a

q
kl, a

d
ij)〉, (4)

where edge functions e(·) are as defined in Equations 1, 2
and 3, respectively. Intuitively, Equation 4 models query-
document attribute observed and co-click associations via
summation over all the queries and documents that can be
associated with their respective attributes.

3.2 Query-Independent
Attribute Parameterization

Given the bipartite association graphs discussed in the
previous section, in this section we attempt to derive a doc-
ument feature representation based on these associations.
Using the edge set of the document-attribute graph GD (see
Equation 2), it is easy to see that document d can be repre-
sented using a binary feature vector

Id = [e(∗, d) ∈ ED]. (5)

In other words, we can use a set of edges in the document-
attribute bipartite graph, where document d is a target, to
derive a set of binary query-independent (a.k.a. static) fea-
tures.

Assuming m document attribute types, and maximum at-
tribute dimensionality v, this will create a document feature

1We use binary associations as edges for the purposes of
presentation clarity, and since they empirically proved to be
effective. However, the presented approach is applicable to
the case of weighted edges without loss of generality.

representation with O(mv) dimensions. If attribute matrix
Ad is sparse, such representation is limiting for many ma-
chine learning tasks, both computationally and in terms of
model effectiveness.

Instead, we can use historical user interactions to parame-
terize this feature representation. In this work we use a sim-
ple parameterization function based on the attribute click-
through ratio (CTR), which is defined as a clicked to ob-
served fraction. CTR is a well-understood user interaction
found to be useful in search [2] and sponsored search [26]
settings. However, it is possible to extend our parameter-
ization approach to other user interactions like document
access counts [27], cursor tracking [18], or touch gestures
[19].

Parameterized document feature representation can be
derived from the attribute graph by marginalizing out the
query attributes from the edges in Equation 4. Formally,

Pd = [
∑
j

∑
aq γc(a

q, ad1j)∑
aq γo(aq, ad1j)

, . . . ,
∑
j

∑
aq γc(a

q, admj)∑
aq γo(aq, admj)

]. (6)

It is easy to see that the size of the Pd vector does not de-
pend on the dimensionality of the individual attribute types.
Therefore, Equation 6 always generates an m-dimensional
document feature representation – one feature per attribute
type – regardless of the attribute sparsity.

3.3 Query-Dependent
Attribute Parameterization

Thus far we have only discussed query-independent doc-
ument feature representations, not related to a particular
search query. In this section, we shall show how this dis-
cussion can be further extended to query-dependent feature
representations.

Similarly to a query-independent document representa-
tion, we can define query-document feature representation
using the intersection among the edge sets of the document-
attribute and query attribute graphs as

Iq,d = [e(q, ∗) · e(∗, d) : e(q, ∗) ∈ EQ,

e(∗, d) ∈ ED]. (7)

This is an even sparser representation than the one in
Equation 5, since involves a cross-product between the edges
of both the query-attribute and document-attribute bipar-
tite graphs. Assuming m document attribute types, n query
attribute types, and maximum attribute dimensionality of
v, this will create an O(mnv2)-dimensional feature represen-
tation. For large values of v, such representation is clearly
too expensive, or even infeasible.

As in the query-independent case, this feature vector di-
mensionality can be reduced using attribute parameteriza-
tion

Pq,d = [
∑
j

∑
l

γc(a
q
1l, a

d
1j)

γo(aq1l, a
d
1j)

, . . . ,
∑
j

∑
l

γc(a
q
nl, a

d
mj)

γo(aqnl, a
d
mj)

]. (8)

Note that, as in the query-independent case, the number
of terms in vector Pq,d does not depend on the dimension-
ality of the attribute types, since they are marginalized out
in the sums in Equation 8. Therefore, the vector Pq,d gener-
ates an mn-dimensional query-dependent document feature
representation – one feature per query-document attribute
type pair – regardless of the attribute sparsity.



Document Query
Categories Small set of commonly used email labels, e.g., Purchases, Pro-

mos, Forums, etc. (see, e.g., [1] for label examples).
Structure Frequent machine-generated subject templates, e.g., Your pack-

age number 123 → Your package number * (see, e.g., Ailon et al.
[3] for more details on subject template generation).

Content Set of frequent n-grams appearing in the email subject,
e.g., Friday lunch invitation for Alice → [‘friday lunch’,

‘lunch invitation’]

Longest frequent n-gram appearing in the
query, e.g., bob weekly schedule → [‘weekly

schedule’]

Table 2: Summary of the query and document attribute types. Only attribute values that appear across more
than u users in our dataset are considered to be frequent. The infrequent attribute values are discarded.

3.4 Ranking with Attribute Parameterization
In general, we are going to assume that we have a base

score scb(q, d) for every query-document pair. This score
can be based on keyword matching or some other ranking
features used in private corpora (see, e.g., Carmel et al. [11]
for an overview). In addition, if our goal is to incorporate
attribute parameterization in ranking, the final score in its
most generic form can be expressed as

sc(Q,D) = f(scb(q, d),Pd,Pq,d). (9)

f(·) can be a hand-tuned score combination or an arbi-
trary machine learned ranking function [25]. In this paper
we use an adaptive approach, which keeps the base score
fixed, and incrementally adds the attribute parameterization
features to the model. This is different from the standard
approach, which learns a scoring function using the entire
set of features (including base features) simultaneously.

Instead, in the adaptive approach, we aim to train the
adjustment δ(Pd,Pq,d) over the base score scb(q, d). The
scoring function f(·) thus becomes:

f(scb(q, d),Pd,Pq,d) = scb(q, d) + δ(Pd,Pq,d). (10)

This adaptive formulation is convenient for our production-
environment system, where the base score is already highly
optimized, and is disjoint with the newly introduced at-
tribute parameterization features.

The additive nature in this adaptive formulation naturally
fits the Multiple Additive Regression Trees (MART) learn-
ing algorithm [20]. In every iteration, MART trains a new
tree to be added to the existing list of trees. In our setting,
we start with our base score scb(q, d) and then train additive
trees over this score.

3.5 Attribute Instantiations

3.5.1 Email Corpus
While the attribute parameterization model described in

the previous section can be applicable in many personal
search scenarios, in this paper we focus on email search,
which received some attention from the research commu-
nity in recent years [11, 15, 28]. Email search is an attrac-
tive candidate for attribute parameterization since emails
are private by nature, and query-email interactions do not
generalize beyond a single user.

We conduct our experiments using an offline dataset de-
rived from several months of user interaction data from one
of the world’s largest email search engines. We rely on a base
ranking system to provide the top-N results (as ranked by
the base score scb(q, d)), and evaluate whether re-ranking

these results using attribute parameterization features Pd

and Pq,d can improve standard click-based search quality
metrics. For more details on the dataset see Section 4.1.1.

3.5.2 Attribute types
In general, attributes can be considered a special case of

multi-view clustering [8], where documents and queries are
represented via several orthogonal views or aspects. While
there are multiple ways to define such attributes, in this work
we use a simple approach that we found to be very effective.
We define three attribute types that provide independent
orthogonal views of the personal content.

• Categories – This attribute type models the content
using a fixed small set of topics or categories. It might
be, for instance, an output of some textual classifier or
clustering algorithm that runs over the private content
[5, 17, 29].

• Structure – This attribute type models the content us-
ing its inherent structure, regardless of the content topic.
For instance, for email corpora, a structure can be rep-
resented via structural templates [3, 29]. For personal
files, it can be represented, among other options, as a
file type.

• Content – This attribute type models the content using
some summary of its actual contents, e.g., by extracting
representative terms or n-grams, or using other extrac-
tive summarization methods.

With these broad definitions in mind, Table 2 summarizes
the instantiation of these attribute types. Note that while it
is theoretically possible to define Categories and Structure
query attributes, we found that in practice simple n-gram
content representation is quite effective on its own. We leave
further exploration of query attribute types to future work.

4. EVALUATION
In this section, we conduct a suite of experiments to eval-

uate the impact of the proposed attribute parameterization
technique on personal search quality. For experimentation,
we use a search engine of a large commercial email provider.

In Section 4.1 we describe our experimental setup, data
sets, and metrics design. In Section 4.2 we compare an over-
all performance of the query dependent and query indepen-
dent attribute parameterization approaches, and a combi-
nation of these in terms of standard information retrieval
metrics. We also provide a detailed analysis of the perfor-
mance of the various approaches, including coverage analysis
and query analysis.



4.1 Experimental Setup
We set up our evaluation using a standard supervised

learning-to-rank framework [25]. In this section, we describe
the data sets used, the supervision approach, and the eval-
uation metrics we used in our experiments.

4.1.1 Data Sets
The data sets we used in this paper are derived from the

search click logs of a commercial email service. There are
two data sets we used in our evaluation: a learning-to-rank
data set and an attribute parameterization data set.

• Learning-to-Rank. This data set is used to train and
evaluate the ranking functions. It is a sample from
the search logs from July 2016, resulting in about 4
million queries, and an average of 4 documents per
query. We use a 50/50 random split on this data to
form our training and test data sets.

• Attribute Parameterization. This data is used for at-
tribute parameterization. It is from the logs of the
same search engine as the learning-to-rank data set.
The difference is: (1) This data is “older” than the
learning-to-rank data set, and does not overlap with
it; (2) This data is much larger than the learning-to-
rank data set. In fact, we used 3 months of un-sampled
search logs from April 2016 to June 2016. As our
parametrization techniques only involve simple data
aggregation (see, e.g., Equations 6 and 8), it easily
scales to such a large data set.

The output from the attribute parameterization data set
is stored in a lookup table keyed by the attributes. We
enrich the learning-to-rank data set using the parameterized
attribute features by joining and aggregating them over the
corresponding document and query attributes.

4.1.2 Click Bias Correction
We use click data as a source of ground truth labels for

the supervision of the learning-to-rank algorithm. This is
a standard practice in personal search applications, and in
particular for email search (see, e.g., [11, 28]). This is due to
the fact that the editorial judgments may not be feasible to
obtain due to the private nature of the corpora. In addition,
the distribution and the content of emails may vary signifi-
cantly across users, and using a small set of paid raters may
present a very skewed picture of the algorithm performance,
biased by the population of the raters.

On the other hand, click data collected from the search
logs does not suffer from this population bias. However,
the click data is likely to be noisy and suffer from position
and presentation biases, as observed in [28]. Therefore we
apply the position bias correction in our training process, as
suggested by some prior work [14, 28].

In order to quantify the click position bias, which will be
used for weighting queries during training and evaluation,
we perform a uniform randomization of the top results pre-
sented to a small fraction of users, and collect user click data
on this randomized result set. We denote bk the bias at k-th
rank (probability that the user will click on rank k in the
randomized experiment). As Wang et al. show [28], weight-
ing the i-th query by wi = 1

bk(i)
corrects for the position

bias across queries where k(i) is the clicked rank in the logs
of the i-th query.

∆MRR
Attribute Type Query-Independent Query-Dependent

Categories +0.48* +0.80**
Structure +1.56** +1.22**
Content +1.27** +2.11**

All +2.10** +2.60**
Full Model +3.24**

Table 3: Overall comparison of different variants. *
and ** mean the improvement is significant at 0.05
and 0.01 levels respectively.

4.1.3 Evaluation Metric
The main evaluation metric used in this paper is a variant

of Mean Reciprocal Rank (MRR). Given a test data set with
N queries, the standard MRR is defined as follows:

MRR =
1

N

N∑
i=1

1

ranki
(11)

where ranki is the rank of the first clicked document of the
i-th query. Let wi be the position bias correction described
in Section 4.1.2 above for the i-th query, then the weighted
MRR is defined as

MRR =
1∑N

i=1 wi

N∑
i=1

wi
1

ranki
, (12)

which is the MRR definition that we will use in the remain-
der of this paper.

In our experiments, we use the metric ∆MRR that is the
relative improvement of a ranking function compared to the
base ranking function scb(q, d), in terms of percentage. For
example, +3.5 means 3.5% MRR improvement.

4.2 Experimental Results
We report our experimental results in this section. We

first give the overall comparison and then analyze the feature
coverage. Finally, we show some insights on what types of
queries benefit the most from the attribute parameterization
based features.

4.2.1 Overall Comparison
The overall comparison is listed in Table 3. In this table,

we compare both query-dependent and query-independent
features. For each of them, we train our ranking function
by adding each attribute type individually as a feature (the
first 3 rows in the table). We then combine all the query-
dependent and query-independent parameterized attribute
types respectively to form the “all” in the two columns of the
table. The “Full Model” uses both the query-dependent and
query-independent parameterized attribute types as features
in a single ranking function.

• For individual attribute types, query-dependent fea-
tures result, in general, in a higher overall improve-
ment that the query-independent ones.

• A combination of all the attribute types outperforms
each individual attribute type, resulting in overall im-
provements of +2.10 for query-independent and +2.60
for query-dependent features. This highlights the fact



QIM QDM FM
Q-I query cvg. 99.08% +2.10 − +3.24
Q-D query cvg. 66.50% − +3.74 +4.31

Table 4: Coverage comparison for query-dependent
and query-independent features. Column 2 shows
the query coverage sliced by query independent (QI)
and query dependent (QD) attributes. Columns 3-
5 show Covered ∆MRR for the Query Independent
(QIM), Query Dependent (QDM), and Full (FM)
models, respectively.

that the selected attribute types are indeed compli-
mentary to each other, and can provide incremental
improvements.

• As a stand-alone feature, the Categories attribute type
performs the worst for both query-dependent and query-
independent features. This is in line with the fact
that our categories are rather coarse grained. Both
Structure and Content are much more fine grained,
and achieve good results.

• Combining all the features and attribute types in the
full model results in the best performance, and outper-
forms the baseline by +3.24. This shows the usefulness
of the combination of both the query-dependent and
the query-independent features.

4.2.2 Coverage Analysis
In the above, we report the overall performance improve-

ment. However, due to the different degrees of sparsity
for different attribute types, the overall improvement is im-
pacted by the feature coverage (fraction of the corpus cov-
ered by the attribute types defined in Table 2). In this
section, we analyze the results in term of the coverage.

In particular, we are interested in the query coverage. A
query is deemed covered by a feature if there is at least one
document in the query result list that has that feature pop-
ulated. The query coverage for a feature is the percentage of
the queries that is covered by the feature. Note that follow-
ing this definition, the results of non-covered queries will be
unaffected by the attribute parameterization features, com-
pared to the base score. Therefore, it makes sense to focus
on the covered queries, and ∆MRR for these queries in par-
ticular.

We compute the query coverage for each of the ranking
functions and we also report the Covered ∆MRR metric
on this subset of covered queries. In Table 4, we show
the coverage and the Covered ∆MRR for query-dependent,
query-independent and the full models. Naturally, com-
pared with the query-dependent ones, we see that the query-
independent features have a much higher coverage2. How-
ever, the improvement on the covered queries is smaller for
the query-dependent model compared to the query-dependent
model (Covered ∆MRR of +2.10 vs +3.74, respectively).
The full model can leverage both of them to achieve a good
tradeoff between coverage and improvement on the covered
queries (+3.24).

2A small minority of the documents may not have any asso-
ciated attributes, therefore the query-independent coverage
is not exactly 100%.
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Figure 4: Query length impact.

Queries w/ n-gram Queries w/o n-gram
Percentage 67.4% 32.6%

∆MRR +4.25 +1.08

Table 5: Queries with n-gram and without matching
frequent n-grams.

One interesting question is whether the query-independent
features contribute to the model when the query-dependent
features are already present. To understand this, we com-
pare the full model vs the query-dependent one on the queries
that have query-dependent feature coverage. The Covered
∆MRR is +4.31, which is significantly larger than +3.74.
This shows that the query-independent features provide sub-
stantial benefits, even if the query-dependent ones are present.

4.2.3 Query Analysis
In this section, we partition the queries into different sub-

sets based on their properties, and then study the impact of
different models to gain more insights on how our proposed
methods work along different query properties.

In Figure 4, we show the results on different query lengths.
We partition the queries based on their length into 10 equal-
sized buckets – meaning each bucket has an equal number
of queries (with lower numbered bucket containing shorter
head queries). In Figure 4, we see that all the methods per-
form the best for short head queries in the lower numbered
buckets. This indicates that the attribute parameterization
features are more reliable for these head queries, likely due
to the larger amount of aggregated data available for these
queries.

Interestingly the query-dependent model is slightly worse
that the query-independent one for longer tail queries. This
is probably due to our n-gram query matching technique
discussed in Table 2. When the query is longer, the meaning
of the longest matching frequent n-gram may drift away from
the meaning of the original query, thus making the attribute
parameterization features less relevant.

Longest matching frequent n-gram is the attribute type
that we used for the query-dependent features. For rare
queries, we may not have matched n-grams. In Table 5, we
show the percentage of queries with and without frequent
n-gram matches. For these subsets of queries, we show the
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Figure 5: Impact of the n-gram frequency.

∆MRR metric. It can be seen that frequent n-grams have
a reasonable coverage of 67.4%. Also, the improvement of
queries with matching n-gram is much larger than the ones
which do not have matching n-grams (and therefore we can
only utilize the query-independent attribute aggregates for
these queries). This suggests that there is a large room for
improvement for these long-tail queries, if we can leverage
other query attributes types (like category or structure) for
better coverage.

In Figure 5, we study the impact of the matched n-gram
frequency. Recall, that for each query, we use the longest n-
gram match. This is an approximate match between queries
and n-grams. We partition the queries into 10 equal-sized
buckets, such that a lower numbered buckets have queries
that match lower-frequency n-grams.

For the query-independent model, we see a larger improve-
ment on the subset of queries that match the most frequent
n-grams. This indicates that the query-independent features
are dominated by the most frequent queries, as a result of
the aggregation process in Equation 6.

On the other hand, for both the full model and the query-
dependent model, we observe a U -shaped curve. On the
right-hand side, we have the high-frequency n-grams for
which we are likely to have enough aggregate data to es-
timate a reliable attribute parameterization in Equation 8.
On the left-hand side, we conjecture that the matched n-
grams are more faithful to the original query intent. To
verify this, we estimate the strength of the match as the ra-
tio of the length of matched n-gram and query length. This
number is plotted in Figure 6. This figure confirms our con-
jecture – as the matched n-gram has a lower frequency, the
matched ratio is larger. This makes the query-dependent
features more relevant.

5. CONCLUSIONS
In this paper we presented a novel attribute parameteri-

zation approach for modeling user interactions in personal
search. In this approach, both documents and queries are
projected into a multi-dimensional space of fine-grained and
semantically coherent attributes based on content categories,
structure and terms. These attributes address the problem
of the sparsity of user interactions, which arises from the
private nature of documents and queries in personal search.
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Figure 6: N-gram frequency vs matching ratio be-
tween frequent n-gram and query.

We then use both query-independent and query-dependent
attribute parameterization for feature derivation in a learning-
to-rank model. We apply the resulting model to a large sam-
ple of query logs of an email search engine. Experimental re-
sults demonstrate that attribute parameterization is indeed
an effective way of leveraging user interactions for improving
personal search quality. Combining all the query-dependent
and query-independent features results in an overall search
quality gain of over 3% (as measured by the MRR met-
ric), a highly significant increase for a test sample of this
size. We also provide a detailed analysis of our technique,
demonstrating high attribute coverage, and consistent im-
provements across different query types.

There are multiple promising venues for future work on
modeling user interactions via attribute parameterization.
First, we only used rudimentary n-gram based attributes
for modeling user queries. As our experiments demonstrate,
further gains can be achieved by more sophisticated ways of
modeling query structure, including entity extraction, intent
detection, synonym expansion, etc. Second, it would be in-
teresting to further explore whether attribute parameteriza-
tion can contribute to existing work on modeling semantic
similarity with deep neural networks, which are currently
mostly based on bag-of-words content representations. Fi-
nally, while in this work we focused on the personal search
task, the proposed attribute parameterization techniques are
general enough to be applied in other ad hoc retrieval sce-
narios, including web search.
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