
Of Hammers and Nails: An Empirical Comparison of Three
Paradigms for Processing Large Graphs

Marc Najork
Microsoft Research

Mountain View, CA, USA
najork@microsoft.com

Dennis Fetterly
Microsoft Research

Mountain View, CA, USA
fetterly@microsoft.com

Alan Halverson
Microsoft Corporation

Madison, WI, USA
alanhal@microsoft.com

Krishnaram Kenthapadi
Microsoft Research

Mountain View, CA, USA
krisken@microsoft.com

Sreenivas Gollapudi
Microsoft Research

Mountain View, CA, USA
sreenig@microsoft.com

ABSTRACT
Many phenomena and artifacts such as road networks, social net-
works and the web can be modeled as large graphs and analyzed
using graph algorithms. However, given the size of the underlying
graphs, efficient implementation of basic operations such as con-
nected component analysis, approximate shortest paths, and link-
based ranking (e.g.PageRank) becomes challenging.

This paper presents an empirical study of computations on such
large graphs in three well-studied platform models, viz., a relational
model, a data-parallel model, and a special-purpose in-memory
model. We choose a prototypical member of each platform model
and analyze the computational efficiencies and requirements for
five basic graph operations used in the analysis of real-world graphs
viz., PageRank, SALSA, Strongly Connected Components (SCC),
Weakly Connected Components (WCC), and Approximate Short-
est Paths (ASP). Further, we characterize each platform in terms of
these computations using model-specific implementations of these
algorithms on a large web graph. Our experiments show that there
is no single platform that performs best across different classes of
operations on large graphs. While relational databases are power-
ful and flexible tools that support a wide variety of computations,
there are computations that benefit from using special-purpose stor-
age systems and others that can exploit data-parallel platforms.

Categories and Subject Descriptors
G.2.2 [Discrete mathematics]: Graph Theory—Graph algorithms,
path and circuit problems; H.2.4 [Database management]: Sys-
tems—Distributed databases

General Terms
Algorithms, Experimentation, Performance

Keywords
Very large graphs, graph algorithms, databases, data-parallel com-
puting, graph servers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’12, February 8–12, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-0747-5/12/02 ...$10.00.

1. INTRODUCTION
Large scale networks are increasingly finding their place beyond

traditional networks such as the Internet and telecommunication
networks. Social and professional networks such as Facebook and
LinkedIn have seen explosive growth in recent years. The social
graph of Facebook, for example, contains more than 750 million
active users1 and an average friend count of 130. The widespread
use of GPS applications and devices is built upon the graph of roads,
intersections, and topographical data. The underlying graph in all
these networks allows a wide range of analyses to measure differ-
ent properties of these networks such as communities, size of the
largest component, and distances between nodes. For example, the
affinity between people in a social network can be modeled as a
connectivity problem between nodes in the underlying graph where
edges denote shared interests between any two people in the net-
work. Computation of the popularity of a web page and of the
similarity between two web pages are widely studied problems.

The analysis of large graphs presents challenging algorithmic
problems. Fundamental applications like component analysis using
breadth-first search (BFS) or depth-first search (DFS), PageRank
computation, and shortest path computation become prohibitively
expensive in the absence of suitable representation of the under-
lying graph. For example, the classic algorithm of Dijkstra [11]
would take days to run on a web graph containing tens of billions
of nodes and trillions of edges. Even in a distributed setting, the se-
quentially dependent nature of Dijkstra’s algorithm would require
huge amounts of communication. For the analysis of large graphs,
research has focused on the relational model, the streaming model,
and other special-purpose and often application-specific models.

Given the explosive growth of both the number and size of graph
datasets as well as the increased complexity of analyzing large
graphs, choosing a scalable platform for graph data storage and
analysis is of paramount importance. Data parallel computation
models such as MapReduce [14] provide a natural candidate plat-
form. However, the complexity of implementing diverse and rich
graph applications as MapReduce jobs produces the need for a
higher level language to express the implementations in. Several
languages for data-parallel systems exist (e.g. Sawzall [30], Pig [27],
and DryadLINQ [39]) with a common goal of providing a declar-
ative programming surface that allows the programmer to ask for
“what” data they want rather than “how” to get it. Many of these
languages are inspired by SQL, the standard language surface of re-
lational database management systems (RDBMS). Thirty years of

1http://www.facebook.com/press/info.php?statistics

RDBMS research experience suggest that it should be considered
as a candidate platform as well. Still, sometimes the “how” of data
retrieval and processing is important. For example, an in-memory
graph store will be extremely efficient in retrieving the neighbor-
hood of a random node and therefore a very effective model for
component analysis in a graph. We therefore have a “hammers and
nails” problem – that is, the hammers are the data storage and pro-
cessing platforms and the nails are the graph applications to evalu-
ate over the data. Given the collection of hammers and nails, how
should we best match them for efficiency, cost, and performance?

In this study, we undertake an extensive empirical study of three
representative systems of the above models and their effectiveness
in solving some prototypical graph algorithms using a large web
graph. The contributions of our study are two-fold. First, given the
size of the graph, we tailored the graph algorithms to work on large-
scale data under the three settings. Second, we provide a first-of-a-
kind study to show the effectiveness of each model to solve differ-
ent classes of graph algorithms. We describe the implementations
of five basic graph algorithms, viz., PageRank [28], SALSA [20,
25], SCC [36, 4], WCC [11], and ASP [13], on a prototypical mem-
ber of each model and further compare these implementations in
terms of performance, scalability, and ease of implementation.

2. RELATED WORK
Recently, a lot of research has been directed toward studying

large-scale graph algorithms necessitated by applications in large
networks such as road networks, wireless networks, the Internet,
and social networks [21, 10, 32, 8, 12]. The implementations in
these studies have mostly relied on application specific storage and
access models for the underlying graphs. Studies have also focused
on developing graph algorithms in the streaming model [16, 17].

On problems involving large data sets, studies using relational
databases have focused on issues related to scale-up and scale-out.
Traditional ways to scale a database included upgrading to faster
CPUs, adding more RAM and disks. However, these approaches of-
ten run into technical and economic limitations. In the limit, twice
the money does not buy twice the performance. Recently, there has
been a plethora of work on “scaling out” as exemplified by systems
such as Netezza, column-based storage systems [33, 2, 26, 9], and
managing data in cloud databases [1].

In the class of data-parallel systems, MapReduce [14] is the first
system to use clusters of commodity hardware for distributed com-
puting on large data sets. The map step in a MapReduce system
typically involves mapping different parts of the problem to dif-
ferent nodes in the system. Each subproblem is processed at the
worker node. The reduce step involves the master node aggregat-
ing the answers from all the worker nodes and processing it to gen-
erate the final output. The order of computation and the dataflow
between nodes is represented using a directed graph known as the
dataflow graph. The scalability and simplicity of this paradigm
led the open-source community to develop Hadoop [6]. In fact,
there are hybrid architectures that combine a MapReduce frame-
work with a RDBMS, such as HadoopDB [3], Hive [37], and Aster
Data. One of the drawbacks of MapReduce and Hadoop is that the
dataflow graph has a fixed topology. Dryad [18] was developed to
overcome this drawback. The dataflow graph in Dryad is computed
dynamically based on the data at run-time. There are related plat-
forms that are built on top of either MapReduce, Hadoop, or Dryad.
Sawzall [30] was developed as an interpreted procedural language
to work on MapReduce; Pig [27] was developed for analyzing large
data sets on Hadoop; and DryadLINQ [39] is a programming lan-
guage developed for writing applications on Dryad.

In the space of special-purpose graph stores, the Connectivity

Server [5] is a link-server built to access the linkage information
for all web pages indexed by the AltaVista search engine. Suel and
Yuan [35] built a similar server to store a compressed web graph
consisting of several hundred million nodes and a billion links. A
number of systems exploit different compression schemes to scale
traditional in-memory stores to large graphs [31, 7]. The system
that is representative of this class in our study is the Scalable Hy-
perlink Store [24]. It differs from the earlier in-memory stores in
that it is distributed, following the client-server model.

Pavlo et al. [29] performed a similar study as ours in which they
provide benchmarks for Hadoop, Vertica, and an unnamed RDBMS
on an identical cluster of 100 commodity nodes. Their workload
consisted of different flavors of grep, database queries with joins
and simple aggregations on clickstream data. They showed that
the RDBMS in general outperformed Hadoop. While we agree
that databases are incredibly useful pieces of infrastructure that can
support an extremely wide set of applications, there are applica-
tions when more specialized tools are more appropriate. One ex-
ample is time-constraints – applications that have extremely low
latency requirements but do not require the guarantees that come
with databases, such as transactional semantics. Another example
is economic constraints – when a service will be run on a million
computers, the potential savings in capital expenditure justify the
cost of implementing a bespoke solution. More recently, a pair of
articles by Stonebraker et al. [34] and Dean and Ghemawat [15]
appeared in CACM to continue the discussion by arguing both for
and against the use of an RDBMS for general data processing, re-
spectively. Stonebraker et al. argue that MapReduce provides an ex-
cellent extract-transform-load (ETL) tool for pre-processing data to
load into an RDBMS, but question the repeated parsing of lines that
the Hadoop implementation does. Dean and Ghemawat counter by
pointing to their Protocol Buffer serialization for data as a way to
avoid repeated line parsing, and provide guidelines for MapReduce
system usage to avoid some of the overheads pointed out in [29]. In
our study, we will focus on the special case of large graph storage
and query processing in our three chosen platforms.

Another paradigm for graph computations that supports iterative
processing of messages between vertices is proposed in [22]. In
each iteration each vertex processes messages received in the pre-
vious iteration and sends out messages that can potentially change
the graph topology. Finally, we note that there are many other graph
databases based on the paradigms that we study in this paper. The
reader is referred to the Wikipedia article on graph databases [38]
and the references within. While comparing these products would
be an interesting study in itself, we note that the focus of this work
has been to study and compare three paradigms of computation on
graph databases instead of the products themselves.

3. EXPERIMENTAL SETUP
This section describes the data sets we used as the input to our

experiments, we hardware we ran them on, and the software plat-
forms (SQL Server PDW, DryadLINQ, and SHS) on top of which
we implemented the five graph algorithms.

3.1 The data sets
We perform our experiments on the ClueWeb09 datasets2. The

larger “Category A” dataset was derived from 1 billion web pages
crawled during January and February 2009. It is comprised of two
files, one containing all unique URLs (325 GB uncompressed, 116
GB compressed) and the other containing all the outlinks (71 GB
uncompressed, 29 GB compressed). The corresponding graph con-

2http://boston.lti.cs.cmu.edu/Data/clueweb09/

sists of 4.77 billion unique URLs and 7.94 billion edges. The maxi-
mum out-degree is 2,079 and the maximum in-degree is 6,445,063.
The smaller “Category B” dataset contains the first 50 million En-
glish pages in Category A. It is comprised of two files, one contain-
ing all unique URLs (30 GB uncompressed, 9.7 GB compressed)
and the other containing all the outlinks (3.8 GB uncompressed, 1.6
GB compressed). The corresponding graph consists of 428 million
unique URLs and 454 million edges. The maximum out-degree is
1,055 and the maximum in-degree is 310,483.

For the evaluation of the SALSA algorithm, we use 171 queries
sampled from the Bing query log. For each query, we extracted up
to 5,000 top URLs (based on BM25F, a text-based ranking feature)
from the ClueWeb09 Category A or B pages, thereby obtaining a
total of 831,591 and 826,364 associated URLs, respectively.

3.2 The hardware
We performed all our experiments on a cluster of 17 Dell Pow-

erEdge 2950 servers, all running Windows Server 2008 R2. Each
server had two Intel Xeon E5430 processors clocked at 2.66 GHz,
16 GB of DDR2 RAM, and six 146 GB, 15K RPM SAS drives. The
computers were each connected to a Force10 S50-01-GE-48T-AC
48-port full-crossbar Gigabit Ethernet switch via Gigabit Ethernet.
For the set of experiments where we used a single server, we ran
the client/control program on the same machine; otherwise we used
16 machines to run the platform and one machine to run the client.

3.3 The platforms
We next describe the three platforms we use, representing the

three paradigms for processing large graphs. We also discuss how
the web graph is preprocessed, loaded and distributed into each of
the three systems, since the performance of the graph algorithms
depends heavily on the way the data is configured on the systems.

SQL Server PDW
Microsoft SQL Server 2008 R2 Parallel Data Warehouse [23] (SQL
Server PDW) is a multi-user client/server RDBMS developed and
commercialized by Microsoft Corporation. It provides standard
RDBMS functionality – transactions, concurrency control, recov-
ery, and a SQL language surface plus extensions (T-SQL). The re-
lational data model is at the heart of data processing for SQL Server
PDW. Set-oriented operations are preferred to row-by-row process-
ing due to overheads associated with query parsing, algebraization,
optimization, and execution that are incurred for each SQL state-
ment passed to the system. SQL Server PDW uses a Control Node
to accept a user query, produces a parallel execution plan, and ex-
ecutes the plan on a set of Compute Nodes. The Control Node is
also responsible for presenting a “single system image” to users of
the system, allowing expression of T-SQL queries as if all data is
stored in a single database instance. SQL Server PDW is an ap-
pliance product that provides a choice of hardware configurations
to users. The experiments we performed for this paper utilized the
hardware described in Section 3.2, and therefore cannot be consid-
ered indicative of real-world SQL Server PDW performance.

The chosen relational schema for the ClueWeb09 data contains
two relations: the nodes relation with attributes id of type bigint
and url of type VARCHAR(900)3; and the edges relation with at-
tributes src and dest, both of type bigint. By contrast, the original
ClueWeb09 edges file contains an adjacency list per source node.
We partitioned the edges and nodes files into 8 pieces to facilitate a
parallel bulk insert operation into SQL Server PDW.

3In SQL Server PDW, index keys are limited to 900 bytes, and
providing efficient URL-to-ID lookups requires an index on URL.

DryadLINQ
DryadLINQ [39]4 is a system for large scale distributed data-parallel
computing using a high-level programming language. Compared to
programming environments such as SQL, MapReduce, and Dryad,
DryadLINQ supports general-purpose imperative and declarative
operations on datasets within a traditional high-level programming
language and thereby provides a higher layer of abstraction. A
DryadLINQ program is a sequential program composed of LINQ
expressions and can be written and debugged using standard .NET
development tools. LINQ expressions are similar to SQL state-
ments, however they are commonly used in conjunction with lambda
expressions (specified with => operators) where each expression
will be applied to every element of the stream. DryadLINQ adds
several methods to enable data-parallel computations, including
PartitionTable.Get and ToPartitionedTable which will re-
spectively read from and write to a data stream spread across multi-
ple machines. Distribution of data is done using the HashPartition
and RangePartition methods. The Apply method both consumes
and produces a stream of elements, which is useful for algorithms
that employ a sliding window. The DryadLINQ system automati-
cally and transparently translates the data-parallel portions of the
program into a distributed execution plan which is passed to the
Dryad execution framework. By design, DryadLINQ is inherently
specialized for streaming computations. In general, DryadLINQ
is suitable for computations that can be expressed using LINQ con-
structs. However, executing a DryadLINQ program incurs at least a
few seconds of overhead. Hence DryadLINQ is not appropriate for
all applications, e.g. applications requiring low-latency distributed
database lookups.

The processed ClueWeb09 data is partitioned into the cluster ma-
chines based on a hash value of the page identifier such that all
pages and their associated link identifiers are present in the same
machine. After the data is loaded into the cluster, whenever a new
job is started, we incur a small overhead as the binaries need to be
copied to all the machines.

Scalable Hyperlink Store
The Scalable Hyperlink Store (SHS) [24] is a distributed in-memory
database for storing large portions of the web graph. It partitions
the nodes (URLs) and the edges (hyperlinks) of the web graph over
a set of servers, maintains all the data in main memory to allow ex-
tremely fast random access, and uses data compression techniques
that leverage properties of the web graph (namely, the prevalence
of relative links) to achieve fairly good compression. SHS was de-
signed to enable research on structural properties of the web graph
as well as new link-based ranking algorithms. It is not well suited
for graph applications that require attaching arbitrary metadata to
nodes and edges (such as anchor texts and weights) as doing so
would result in decreased compression ratios. To achieve good
compression, SHS maintains a bijection between textual URLs and
numerical UIDs, and edges are represented in terms of UIDs. Ini-
tially the SHS Builder distributes the web graph data across a set
of available SHS servers, by partitioning the URLs and their associ-
ated links according to the URLs’ host components. This preserves
link locality, that is, all URLs on a host and all links between pages
on the same host are kept in the same SHS server. The clerk can
determine the SHS server responsible for a URL by performing a
local computation (hash function). Similarly the SHS server ID is
encoded in UIDs, so that a client can determine the SHS server
owning a UID locally. Client applications communicate with SHS
via the ShsClerk class whose key methods are as follows:

4Available at http://connect.microsoft.com/Dryad

public class ShsClerk {
public ShsClerk(string shsName) {...}
public IEnumerable<long> Uids {...}
public bool IsLastUid(long uid) {...}
public long[] BatchedUrlToUid(string[] urls) {...}
public string[] BatchedUidToUrl(long[] uids) {...}
public long[][] BatchedGetLinks(bool fwd, long[] uids) {...}
public long[][] BatchedSampleLinks(bool fwd, long[] uids,

int numSamples, bool consistent) {...}
public UidState<T> AllocateUidState<T>() {...}
...

}
public class UidState<T> {

public void Dispose() {...}
public T Get(long uid) {...}
public void Set(long uid, T val) {...}
public T[] GetMany(long[] uids) {...}
public void SetMany(long[] uids, T[] vals) {...}
public IEnumerable<UidVal<T>> GetAll() {...}
public void SetAll(Func<long,T> f) {...}

}
public struct UidVal<T> {

public readonly long uid;
public readonly T val;
public UidVal(long uid, T val) {...}

}
public struct UidBatch {

public UidBatch(int sz) {...}
public void Add(long uid) {...}
public static implicit operator long[] (UidBatch x) {...}
public bool Full { get {...} }
public void Reset() {...}

}
public class UidMap {

public UidMap(long[][] items) {...}
public int this[long item] {...}
public static implicit operator long[] (UidMap x) {...}
...

}

The ShsClerk constructor creates a new clerk object connected to
the given SHS service. UIDs can be enumerated using the C# enu-
merator Uids, and IsLastUid(u) returns whether u is the final
UID in that enumeration. BatchedUrlToUid and BatchedUidToUrl
map URLs to UIDs and vice versa. The method BatchedGetLinks
returns out-links/in-links associated with UIDs depending on the
value of fwd. The method BatchedSampleLinks can be used to
return either a uniformly random sample or a consistent sample of
such links. The Batched methods allow clients to send many UIDs
or URLs at once, thereby allowing them to amortize the RPC over-
head, which is crucial for performance.

The version of SHS described in [24] provided a read-only store
of the vertices and edges of the web graph. Since then, we have
augmented the system to also provide a per-vertex read-write stor-
age service. Calling AllocateUidState<T>() allocates a value
of type T for each vertex in the graph, distributed over the SHS
servers in the same way as the vertices themselves, and returns a
UidState handle to this distributed mapping. The UidState pro-
vides a Dispose method for freeing up the server-side state, and
methods for reading and updating the values. Get and Set read
and update the value associated with a single UID, GetMany and
SetMany read and update the values associated with a batch of
UIDs, GetAll returns an enumeration of all UID/value pairs, and
SetAll sets all values functionally dependent on their UIDs.

Among the auxiliary classes contained in the SHS package, two
should be mentioned here: The UidBatch class makes it easy to
aggregate UIDs into a bounded-size batch, for use with methods
such as BatchedGetLinks. The UidMap class maps a multi-set
of UIDs as returned by BatchedGetLinks to a set of UIDs real-
ized as a long array that can be passed to UidState.GetMany and
UidState.SetMany, and provides a way for obtaining the index of
a given UID in that array.

We preprocess the ClueWeb09 dataset using DryadLINQ to pro-
duce a file containing the URLs of all pages and their links, which
is then ingested by the SHS Builder to produce an SHS store.

4. ALGORITHM IMPLEMENTATION AND
EVALUATION

We evaluated the five graph algorithms on the datasets described
in Section 3.1 on each of the three systems. For each algorithm,
we provide a short description of the graph algorithm and its imple-
mentation on each system. Before we delve into the details of our
implementation of each algorithm, we describe the evaluation crite-
ria, both quantitative and qualitative, for comparing the systems.

• Performance: We measure performance in terms of the run-
ning time for each implementation of each algorithm.

• Scalability: We characterize how the performance of each
implementation changes as the size of the cluster and/or the
size of the graph increases.

• Ease of implementation: We consider how elegant, concise
and natural each implementation is.

We report performance in terms of running time in seconds. Table 1
shows the running time of the implementations of the five algo-
rithms on each of the three platforms, processing the ClueWeb09
Category B graph using a single server. Table 2 shows running
times of the same programs processing the same graph using six-
teen servers. As the tables show, SHS experiences a substantial
slowdown for every algorithm. The reasons for this are two-fold:
first, SHS runs in client-server paradigm where the data resides in
the servers and the computation happens in the client. Therefore,
increasing the number of servers only scales up the available stor-
age, but not the available computing resources, since the algorithms
run on the client machine; On the other hand, both DryadLINQ
and SQL Server PDW admit data-parallel computation and there-
fore scale up gracefully on both the data and computation as more
servers are added to the system. We note that DryadLINQ is op-
timized for streaming access of data and this model is especially
useful for computations like ASP and WCC where one needs to
access all the nodes in the graph. However, this advantage is not
present in the case of SALSA and to a lesser extent SCC where the
access to nodes is mostly random. We would also like to point out
that in the case of the single server, SHS also benefits from having
the client and server running on the same machine.

Another key measure of effectiveness of an algorithm is its scal-
ability. In our case, the key question to ask is how does each of
the platforms perform when the size of the graph increases? Ta-
ble 3 shows similar running times of the same programs process-
ing the ClueWeb09 Category A graph using sixteen servers. We
note that this graph has an order-of-magnitude more nodes than
the ClueWeb09 Category B graph. While both DryadLINQ and
SQL Server PDW scale gracefully on the larger data set, SHS suf-
fers from the bottleneck introduced by having the computation per-
formed in the client even as it scales well in terms of using more
servers to handle the larger data. We discuss the scalability of each
platform in more detail as we describe the implementation of each
algorithm in the following sections.

Performance aside, we are also interested in how elegant and con-
cise each implementation is. A quantitative measure of conciseness
is the number of lines of code, which we report in Table 4. For the
first algorithm (PageRank), we discuss the code in detail to give a
flavor of implementations in each of the systems.

Algorithm SQL Server PDW DryadLINQ SHS

PageRank 122,305 83,472 63,771
SALSA 5,873 4,843 37
SCC 1,147 3,243 94,346/816
WCC 63,972 74,359 1,801
ASP 138,911 175,839 77,214

Table 1: Running time in seconds for each algorithm implemen-
tation in each system, processing the Category B graph on one
server.

Algorithm SQL Server PDW DryadLINQ SHS

PageRank 8,970 4,513 90,942
SALSA 2,034 439 163
SCC 475 446 214,858/1,073
WCC 4,207 3,844 1,976
ASP 30,379 17,089 246,944

Table 2: Running time in seconds for each algorithm implemen-
tation in each system, processing the Category B graph on six-
teen servers.

4.1 PageRank
PageRank [28] (Algorithm 1) computes a query-independent score

of web pages based on endorsement (in the form of links) of each
web page by other web pages. It is well-suited for data-parallel ar-
chitectures, since links and one score vector can be easily streamed.

SQL Server PDW
The T-SQL implementation uses three temporary tables, for current
(score_cur) and previous (score_prev) scores and the count of out-
links (link_counts) for each node. Pre-computing the outlink counts
provides a straightforward way to normalize the score being passed
from a source node to its destination outlinks. The link_counts ta-
ble is sparse, meaning that only nodes with non-zero out-degree are
present. In each iteration, the scores in score_prev are passed on to
outlinks, and new rank is provided via the random jump probabil-
ity as the two queries concatenated by the UNION ALL statement.
The results are grouped by the node-id and summed to populate the
score_cur table. At the end of each iteration, the score_prev table
is dropped and the score_cur table is renamed to score_prev.

DryadLINQ
The DryadLINQ implementation creates a distributed stream of
〈page-id, link-ids〉 for each node in the graph and a distributed stream
of 〈id,score〉 pairs such that each score is 1/n and a pair with a
given id resides on the same machine as the link entry with the
matching page-id. Each PageRank iteration is performed in paral-
lel using a join of these two streams on page-id and id. All tuples
with the same key u are aggregated in the machine responsible for u
and then the join on u is locally computed on this machine. Denot-
ing the adjacency list of u by links[u], the output of the join is a new
stream of 〈v, score[u]/|links[u]|〉 pairs for each node v in links[u].
Then all pairs in the new stream about the same node v are aggre-
gated using a group by operation (so that the probability contribu-
tions from every in-link to v are grouped together) and the score
for v is updated. At the end of each iteration, the scores are written
to disks across the cluster. Note that the PageRank implementation
makes full use of data-parallel computation in DryadLINQ.

Algorithm SQL Server PDW DryadLINQ SHS

PageRank 156,982 68,791 836,445
SALSA 2,199 2,211 124
SCC 7,306 6,294 -/15,903
WCC 214,479 160,168 26,210
ASP 671,142 749,016 2,381,278

Table 3: Running time in seconds for each algorithm implemen-
tation in each system, processing the Category A graph on six-
teen servers.

Algorithm SQL Server PDW DryadLINQ SHS

PageRank 34 23 38
SALSA 116 165 77
SCC -/247 -/118 66/174
WCC 86 40 181
ASP 78 144 108

Table 4: Number of lines of code for each algorithm implemen-
tation in each system.

SHS
The SHS implementation performs batched invocations to the server
to amortize network latency. During each iteration, we enumerate
the UIDs in a fixed order using the C# enumerator Uids and create
batches of UIDs using a UidBatch object. Whenever the batch
becomes full or the last UID is reached, we obtain the forward
links for all UIDs in the batch using the method BatchedGetLinks.
We then retrieve the scores corresponding to these links from the
servers, update them appropriately, and send them back to the servers.
After going through all the UIDs, the scores are retrieved from the
servers and written to a file on the client’s disk, which is then read
in the next iteration in a streaming fashion. Writing to the disk
avoids having to maintain two sets of scores in main memory.

Performance Evaluation
For PageRank computation, we observed that on a single server,
SHS outperforms both DryadLINQ and SQL Server PDW. How-
ever, when either the number of machines or the data is increased,
the other two platforms take advantage of the increase in storage
and compute power and perform significantly better than SHS. The
fact that PageRank is highly parallelizable is the main reason be-
hind the improvement.

As can be seen from the code snippets for PageRank and from
Table 4, all the algorithms could be implemented using a few lines
of code on all the platforms. We notice that for each system, the al-
gorithms that are most natural to that paradigm take the fewest lines
of code to implement. In the case of SQL Server PDW, each row of
the edges table is complete – that is, the source and destination node
IDs are both represented. This creates both opportunity and limita-
tions for the programmer. For example, finding edges whose source
node ID is greater than the destination node ID can be expressed as
SELECT src, dest FROM edges WHERE src > dest. However,
we need to keep the context explicit in the query, as the output
schema is fixed. The programmer cannot query for a list of desti-
nation IDs for a given source ID when the list is of variable length
depending upon the source ID. In the above example, it would be
space-efficient to write SELECT src, listOfDest FROM edges
WHERE src > dest. Some relational systems have been extended
with arrays and/or nested relations to provide support for such op-
erations, but code using these extensions is not portable.

4.2 SALSA
The Stochastic Approach to Link-Sensitivity Analysis (SALSA)

[20] is a query-dependent link-based ranking algorithm inspired
by HITS [19] and PageRank [28]. SALSA computes an authority
score for each node in a query-specific neighborhood graph, by per-
forming a random walk on the neighborhood graph (Algorithm 2).
In the computation of this neighborhood graph, Ct(X) refers to a
consistent unbiased sample of t elements from set X , as described
in [25]. We used consistent sampling parameters, a = b = 5. The
random walk on the neighborhood graph commences on a node
with in-degree greater than 0. Each step in the walk consists of
following an edge in the backward direction and then following an
edge in the forward direction. The stationary probability distribu-
tion of the random walk is returned as the authority score vector s.
We next describe the implementations in the three systems.

Algorithm 1 PAGERANK(G)

Input: A directed graph G = (V,E) with n nodes, random jump
probability d, number of iterations z.
Output: A vector s of stationary probabilities for the nodes in G.

1: for each u ∈V do
2: s[u] := 1/n, s′[u] := 0
3: for k = 1 to z do
4: for each u ∈V do
5: links[u] := {v|(u,v) ∈ E}
6: for each v ∈ links[u] do
7: s′[v] := s′[v]+ s[u]

|links[u]|
8: for each u ∈V do
9: s[u] := d/n+(1−d)s′[u]

10: s′[u] := 0

public class ShsPageRank {
private static string Name(int i) { return "scores-" + i; }
public static void Main(string[] args) {

Shs.ShsClerk shs = new Shs.ShsClerk(args[0]);
double d = double.Parse(args[1]);
long n = shs.NumUrls();
var ob = new OutBuf(Name(0));
for (long i = 0; i < n; i++) ob.WriteDouble(1.0 / n);
ob.Close();
var scores = shs.AllocateUidState<double>();
var uidBatch = new Shs.UidBatch(50000);
for (int k = 0; k < 100; k++) {
scores.SetAll(x => d / n);
var ib = new InBuf(Name(k));
foreach (long u in shs.Uids) {
uidBatch.Add(u);
if (uidBatch.Full || shs.IsLastUid(u)) {

var linkBatch = shs.BatchedGetLinks(true, uidBatch);
var linkMap = new Shs.UidMap(linkBatch);
var scoreArr = scores.GetMany(linkMap);
foreach (var links in linkBatch) {
double f = (1.0 - d) * ib.ReadDouble() / links.Length;
foreach (long link in links) {
scoreArr[linkMap[link]] += f;

}
}
scores.SetMany(linkMap, scoreArr);
uidBatch.Reset();

}
}
ib.Close();
ob = new OutBuf(Name(k+1));
foreach (var us in scores.GetAll()) ob.WriteDouble(us.val);
ob.Close();
System.IO.File.Delete(Name(k));

}
}

}

SHS implementation of PageRank

CREATE TABLE link_counts WITH (DISTRIBUTION=HASH(id)) AS
SELECT src AS id, COUNT(dest) AS cnt
FROM edges GROUP BY src;

Declare @CNODES bigint = (SELECT COUNT_BIG(*) FROM nodes);
CREATE TABLE score_prev WITH (DISTRIBUTION=HASH(id)) AS

SELECT n.id, 1.0 / @CNODES AS score FROM nodes n;
Declare @ITER int = 0, @d float = 0.15;
While @ITER < 100
BEGIN

CREATE TABLE score_cur WITH (DISTRIBUTION=HASH(id)) AS
SELECT s.curid AS id, SUM(s.newscore) AS score FROM
(SELECT * FROM (
SELECT e.dest AS curid,

SUM((1.0-@d)*(sp.score/lc.cnt)) AS newscore
FROM score_prev sp, edges e, link_counts lc
WHERE sp.id = lc.id AND sp.id = e.src
GROUP BY e.dest
WITH (DISTRIBUTED_AGG)) A
UNION ALL
SELECT sp.id AS curid, (@d / @CNODES) AS newscore
FROM score_prev sp
WHERE sp.id <> @CNODES) s GROUP BY s.curid;

INSERT INTO score_cur
SELECT CAST(@CNODES AS bigint) AS id,
SUM(CASE WHEN lc.cnt IS NULL

THEN sp.score ELSE 0 END) * (1.0 - @d)
FROM score_prev sp

LEFT OUTER JOIN link_counts lc on sp.id = lc.id;

DROP TABLE score_prev;
RENAME OBJECT score_cur TO score_prev;
SET @ITER += 1;

END
DROP TABLE link_counts; DROP TABLE score_prev;

SQL Server PDW implementation of PageRank

using LD = LinqToDryad.Pair<long, double>;
using GR = LinqToDryad.Pair<long, long[]>;

public class DryadLINQPageRank {
public static IEnumerable<LD> InitScores(long n) {
for (long i = 0; i < n; i++) yield return new LD(i, 1.0 / n);

}
static void Main(string[] args) {
var pages = PartitionedTable.Get<GR>("tidyfs://cw-graph");
long n = pages.LongCount();
double d = double.Parse(args[0]);
IQueryable<LD> scores = pages.Apply(x => InitScores(n))

.HashPartition(x => x.Key, pages.PartitionCount)

.ToPartitionedTable("tidyfs://scores-0");
for (int i = 1; i <= 100; i++) {

var scores1 = from p in pages
join s in scores on p.Key equals s.Key
from v in p.Value
select new LD(v, s.Value / p.Value.Length);

scores = from s in scores1
group s.Value by s.Key into g
select new LD(g.Key, d / n + (1.0 - d) * g.Sum());

scores.ToPartitionedTable("tidyfs://scores-" + i);
}

}
}

DryadLINQ implementation of PageRank

SQL Server PDW
The SALSA implementation for SQL Server PDW is a set-oriented
implementation of the algorithm. For all input queries, we compute
the graph based on the input URLs and random sampling of the
edges, keeping track of which query-id the graph belongs to. We
perform a random walk back and forth on the graphs 100 times and
return the top input urls for each query according to the calculated
score. Due to the interpreted nature of a T-SQL batch script in SQL

Algorithm 2 SALSA(G)

Input: A directed web graph G = (V,E), a result set R ⊆ V of
URLs that satisfy a query q, consistent sampling parameters a, b.
Output: A vector s of SALSA authority scores for each URL in a
query-specific neighborhood graph.

1: VR :=
S

r∈R{r}∪Ca({u|(u,r) ∈ E})∪Cb({v|(r,v) ∈ E})
2: ER := {(u,v) ∈ E|u ∈VR ∧v ∈VR}
3: V A

R := {u ∈VR|in(u) > 0}
4: for each u ∈VR do
5: s[u] := 1

|VA
R | if u ∈V A

R ; 0 otherwise

6: repeat
7: for each u ∈VA

R do

8: s′[u] := ∑(v,u)∈ER ∑(u,w)∈ER
s[w]

out(v)·in(w)

9: for each u ∈VA
R do

10: s[u] := s′[u]
11: until s converges

Server PDW, each short random walk query is re-compiled and op-
timized. This adds some overhead to the total query execution time,
but the overhead is amortized across all input queries.

The program performs consistent sampling by joining the edges
table to a table containing a pre-computed mapping of node ids to
random numbers, which are obtained in ascending order using a
ROW_NUMBER() OVER() analytic function, and only the rows with
a row number less than 5 are included in the graph.

DryadLINQ
The DryadLINQ implementation computes both the neighborhood
graph and the SALSA authority scores in a distributed data-parallel
fashion. First, a distributed stream of 〈page-id, link-ids〉 correspond-
ing to graph G is created and then streams of forward and back-
ward edges are generated from this stream. Similarly a distributed
stream Rs of 〈query-id,page-id〉 pairs is generated by joining the
〈query-id,URL〉 dataset with the given URL/id mapping. The stream
Rs is joined with streams of forward and backward edges and then
sampled to generate the SALSA neighborhood set VR associated
with each query (as a stream). This neighborhood set stream is then
joined with the forward graph stream to obtain the neighborhood
graph stream for each query (a stream of 〈query-id,page-id, link-id〉
tuples). Using a series of distributed joins, we aggregate the rel-
evant information for each query (query-id, result set R, neigh-
borhood set VR, and edge set ER) at one cluster node and com-
pute the SALSA authority scores locally on that node. Finally, we
map the scores to the URLs by joining the stream of computed
SALSA scores with the URL/id mapping. The implementation
benefits tremendously from DryadLINQ’s ability to perform dis-
tributed joins over data streams.

SHS
The SHS implementation computes the neighborhood graph by com-
municating with the SHS store and then performs the random walk
locally. The neighborhood graph corresponding to the given set of
result URLs is computed as follows. The set of result URLs is first
converted to UIDs (using one invocation of BatchedUrlToUid).
Then BatchedSampleLinks is called twice to obtain a random
sample of forward and backward links for each URL in the result
set. As the method BatchedSampleLinks performs sampling at
the server end, the network overhead is kept to a minimum. Fi-
nally the set of URLs pointed to by the vertices in the neighborhood
graph is obtained (using one invocation of BatchedGetLinks) for
use in the remaining local computations. Thus batching over many
UIDs (or URLs) helps to significantly reduce the RPC overhead.

Algorithm 3 SCC(G)
Input: A directed graph G = (V,E).
Output: A list of SCCs where each SCC is represented as a set of nodes
belonging to the SCC.
1: for each u ∈V do
2: f wdVisited[u] := f alse, f wdParent[u] := Nil
3: time := 0
4: for each u ∈V do
5: if f wdVisited[u] = f alse then
6: DFS-VISIT(u,E, f wdVisited, f wdParent, f)
7: ET := {(v,u)|(u,v) ∈ E}
8: for each u ∈V do
9: bwdVisited[u] := f alse,bwdParent[u] := Nil

10: for each u ∈V in decreasing order of f [u] do
11: if bwdVisited[u] = f alse then
12: DFS-VISIT(u,ET,bwdVisited,bwdParent,b)
13: Output the vertices of each tree in the backward depth-first forest as a

separate strongly connected component.

Algorithm 3 DFS-VISIT(u,E,visited, parent, f)
time := time+1
links[u] := {v|(u,v) ∈ E}
for each v ∈ links[u] do

if visited[v] = f alse then
parent[v] := u
DFS-VISIT(v,E,visited, parent, f)

visited[u] := true, f [u] := time

Performance Evaluation
We observe that SALSA is inherently based on random access to
the node information. As noted earlier, SHS is very suitable for
such applications. In fact, as both tables show SHS does indeed per-
form as much as 160 times better than both DryadLINQ and SQL
Server PDW. SHS does not benefit from the increase in the number
of servers from one to sixteen, while the other two platforms exploit
the additional storage and compute power to their benefit. The per-
formance difference between SQL Server PDW and DryadLINQ
can be attributed to DryadLINQ performing the power iteration on
a single machine instead of distributed over the cluster, whereas
SQL Server PDW has to persist the result after each iteration to
distributed storage.

4.3 Strongly Connected Components
We next consider the problem of decomposing a directed graph

into its strongly connected components [36, 4]. This problem is im-
portant since many problems on large directed graphs require such
a decomposition. Typically an original problem can be divided into
subproblems, one for each strongly connected component.

The standard linear-time algorithm for computing strongly con-
nected components in a directed graph (Algorithm 3) uses two depth-
first searches, one on the graph and one on the transpose graph.
However, depth-first search is highly sequential and hence this algo-
rithm is not suitable for execution on very large graphs. We instead
implement a “hybrid” version which copies a pruned version of the
graph locally and runs Algorithm 3 locally. The graph is pruned as
follows: All nodes with no outlinks (sinks) or no inlinks (sources)
are guaranteed to be singleton SCCs and hence we rule out these
nodes and their incident edges. As most of the nodes in a large web
graph tend to be sinks, we get a substantial reduction in the graph
size so that the new graph fits into memory and DFS computations
can be performed locally. However this approach does not scale
with the size of the graph. We briefly describe the SCC implemen-
tations in the three systems. We also implement the original version
of Algorithm 3 on SHS.

SQL Server PDW
We describe the SQL Server PDW implementation of SCC using
the hybrid version. First, SQL Server PDW is used to filter the
nodes and edges to remove nodes that cannot possibly end up in an
SCC larger than size 1. By definition, nodes in a multi-node SCC
must have at least one outlink and at least one inlink other than a
reflexive edge. The filtered node list comes from intersecting the
src and dest sets in the edges table. To aid in the computation,
a mapping function is constructed to a new, dense ID space. The
edges are then filtered and mapped into the new ID space. Given the
reduced size of the nodes and edges table, both are read out of SQL
Server PDW into main memory where Algorithm 3 is performed.
The edges are read into adjacency arrays twice, first ordered by src
(forward direction), then by dest (backward direction).

DryadLINQ
We next describe the DryadLINQ implementation of the hybrid
version of Algorithm 3. First we create a distributed stream of
〈page-id, link-ids〉 for each node in the graph and obtain the num-
ber of nodes using a count operation. We then create a stream
of 〈source-id,destination-id〉 for edges in the graph, from which
we generate streams of non-sink nodes (nodes with non-zero out-
degree) and non-source nodes (nodes with non-zero in-degree) us-
ing select and distinct operations. Intersecting these two streams
provides a stream of nodes in the pruned graph, which we then map
to a new, dense ID space. Then we stream through the distributed
stream of edges, loading the forward graph corresponding to the
above nodes into main memory of the client machine, and locally
perform forward DFS. Then we similarly load the backward graph
into main memory and perform backward DFS locally. Finally the
SCCs (including the singleton SCCs) are written to disk.

SHS
The SHS implementation of the original version of Algorithm 3 in-
volves a clever implementation of depth-first search to handle the
large graph size. As either out-links or in-links can be retrieved
for each node, we do not have to compute the transpose graph GT

explicitly. In order to maintain the nodes in the order of their fin-
ishing times in the first DFS, we implement a custom stack that is
optimized for disk access. Due to the sequential nature of depth-
first search, we do not parallelize (batch) accesses and hence incur
a significant network overhead.

We also implemented the hybrid version of Algorithm 3. We per-
form BatchedGetDegree requests to the store to obtain forward
and backward degrees for all nodes, thereby determining nodes
guaranteed to be singleton SCCs. We map the remaining nodes
to a new, dense ID space. Then we load the forward graph into
user space (main memory of the client machine) using a series
of BatchedGetLinks requests, and perform forward DFS locally.
Then we load the backward graph into user space (reusing memory)
and perform backward DFS locally. While this approach improves
the performance by about two orders of magnitude due to the re-
duced network overhead, it is inherently non-scalable.

Performance Evaluation
The performance of the non-hybrid SHS implementation of SCC is
largely constrained by the exploration of one node at a time in DFS,
which requires one roundtrip to the server per node in the DFS.

For the hybrid version, SHS performs best for the one server
Category B experiment, but falls behind SQL Server PDW and
DryadLINQ in both of the sixteen node experiments. The SCC im-
plementation for all three platforms under study is identical, with

Algorithm 4 WCC(G)

Input: A directed graph G = (V,E) on n nodes, where V =
{1, . . . ,n} and E ⊆V ×V .
Output: A mapping rep where all nodes in the same WCC map to
the same representative element.

1: for each u ∈V do
2: rep[u] := u
3: repeat
4: progress := f alse
5: for each u ∈V do
6: links[u] := {v|(u,v) ∈ E}
7: minid := rep[u]
8: for each v ∈ links[u] do
9: if rep[v] 	= minid then

10: minid := min(minid,rep[v])
11: progress := true
12: rep[u] := minid
13: for each v ∈ links[u] do
14: rep[v] := minid
15: until ¬progress

the exception of the first phase. At the beginning, each implementa-
tion must prune out nodes that will be in singleton SCCs and remap
the remaining node ids into a dense id space that starts with zero.
The edges containing references to these nodes are then rewritten
to use the mapped node ids as well. This allows a very compact
in-memory representation – for example, even if the original node
ids required an eight byte integer representation, the mapped ids
can utilize a four byte integer. In the case of SQL Server PDW and
DryadLINQ, this mapping effort can be done completely inside the
cluster and only the mapped and pruned edges need be pulled out
to the client SCC memory. By contrast, the SHS implementation
must pull the forward and backward link counts for every node and
build the id mapping in the client. It further must pull all of the
links for any node found to have nonzero in and out degree, and is
not able to prune the edges for those nodes on the server side.

4.4 Weakly Connected Components
A related problem is to compute the weakly connected compo-

nents in a directed graph. Determining the connected components
and their sizes is crucial to understanding the network structure of
massive graphs. Moreover other graph computations such as min-
imum spanning tree or approximate shortest path are defined only
over individual components.

Weakly connected components can be computed by performing
depth-first search or breadth-first search on the underlying undi-
rected graph. Our algorithm uses the latter since all nodes in the
BFS frontier can be explored in parallel. Algorithm 4 has resem-
blance to the algorithm for computing WCC using disjoint-set oper-
ations [11]. Initially each node is in its own connected component
(with component value equal to itself). We then iterate until no
component mapping gets updated. In each iteration, for each node
u, we check whether any of its neighbors is mapped to a different
component and if so, update the node and its neighbors to map to
the smallest component value amongst them.

SQL Server PDW
The SQL Server PDW implementation of WCC starts by precom-
puting the “flattened graph” – that is, the union of the directed edge
set with the set of edges reversed. To speed computation, all nodes
not present in the flattened graph are removed from further process-

ing since they are guaranteed to be in singleton WCCs. The prop-
agation of the minid in each loop is done as a join of the current
id-to-minid table with the flattened graph, UNIONed with the id-to-
minid table. We perform a GROUP BY id with a MIN() function
applied to the minids from that union-ed set. The loop continues
until the minid for all ids does not change across an iteration.

DryadLINQ
The DryadLINQ implementation of WCC generates a distributed
stream E of graph edges from the input graph and maintains a dis-
tributed stream C of 〈node,componentID〉 pairs. C is initialized
with the identity mapping so that each node is in its own compo-
nent. Then the components are merged by growing balls around
the nodes and checking whether nodes in intersecting balls are as-
signed to the same component. This “growing” step is implemented
as follows. Let C′ denote the stream obtained by joining C with
E (C′ = {(y, id)|(x, id) ∈ C∧ (x,y) ∈ E}). We compute the union
C′ ∪C and then generate the stream with the new component map-
ping, Cnew = {(x,minid)|minid = min(id : (x, id)∈C∪C′)} using a
group by operation. When all the components have been assigned
correctly, Cnew will be identical to C. If Cnew is different from C,
we update C to Cnew and iterate. As the component ID for any
node can only decrease, it is sufficient to check whether the sum of
component IDs over all nodes has changed.

SHS
The SHS implementation of WCC is based on disjoint-set opera-
tions [11]. The union-find forest is represented as a distributed
UidState array, which can be updated in constant time, and per-
formance is further improved through batching.

Performance Evaluation
We observe that SHS dramatically outperforms SQL Server PDW
and DryadLINQ, due to its ability to express the union-find algo-
rithm. As described earlier, DryadLINQ is limited by the overhead
associated with evaluating the loop termination. To amortize this
overhead, the DryadLINQ program performs partial loop unrolling,
checking the termination condition every five iterations. The SQL
Server PDW implementation does the loop termination check on
every iteration, and therefore suffers from an overhead that the
DryadLINQ implementation does not.

4.5 Approximate Shortest Path
We next consider the problem of finding shortest paths between

pairs of nodes in a large graph, which is a fundamental operation
with many applications. However, for web-scale graphs, computa-
tion of exact shortest paths is challenging since these graphs do not
fit in main memory on a single machine. Even in a distributed set-
ting, the computation would require huge amounts of communica-
tion. Furthermore, in a real-time application, we would like to com-
pute shortest paths with limited memory and processing resources.
Hence we are interested in computing approximate shortest paths
between nodes.

We use the algorithm proposed in [13]. The essential idea behind
that algorithm is the following: In an offline computation, sample
a small number of sets of nodes in the graph (sets of seed nodes).
Then, for each node in the graph, find the closest seed in each of
these seed sets. The sketch for a node is composed of the closest
seeds, and the distance to these closest seeds. The offline steps are
described in Algorithm 5. Then, in an online step, the sketches
can be used to estimate the distance between any pair of nodes (as
described in [13]). As the most important component of computa-
tion of the approximate shortest paths is computation of the offline

Algorithm 5 OFFLINE-SKETCH(G)

Input: An undirected graph G = (V,E).
Output: Vectors of nearest seeds seed[u] and their distances dist[u]
for each node u.

1: C := {u ∈V |degree(u) ≥ 2}
2: I := {0,1, . . . ,�log|C|�}
3: for each i ∈ I do
4: Si := Random sample of 2i elements of C
5: for each u ∈V and each i ∈ I do
6: seed[u][i] := u
7: dist[u][i] := 0 if u ∈ Si; ∞ otherwise
8: repeat
9: progress := f alse

10: for each (u,v) ∈ E and each i ∈ I do
11: if dist[u][i] < dist[v][i] then
12: seed[v][i] := seed[u][i]
13: dist[v][i] := dist[u][i]+1
14: progress := true
15: until ¬progress

sketch for all nodes u, we perform our evaluations on this step, treat-
ing the graph as undirected.

SQL Server PDW
We have implemented ASP in T-SQL in an iterative manner. For
each chosen seed set size, the next BFS search is computed in a
single query for all seeds. When a given node is encountered along
multiple paths originating from different seeds, the seed with the
minimum ID value is chosen as the seed. Beyond this conversion,
the algorithm is implemented in a straightforward manner.

DryadLINQ
The DryadLINQ implementation uses the input stream of graph
edges to compute a stream of (undirected) degrees of nodes us-
ing a group by operation, and then obtains a stream of candidate
nodes C by removing nodes with degree < 2. It then determines
the count of C to to set r = �log |C|� and also to set the initial value
of the number of nodes reachable from all the sampled sets. Next
it samples sets of sizes, 1,2,22,23, . . . ,2r by generating a stream of
〈node, initial-sketch〉 pairs, where for each node u, the correspond-
ing initial-sketch represents membership of u in the r sampled sets.
DryadLINQ’s flexibility allows us to use a single series of joins to
process all of the seed sets, thereby performing the BFSs for the
logn seed sets in parallel. For each sampled set S, in parallel, we
grow a ball around S and thereby compute distances of all other
nodes to S. At the end of each iteration, we check whether the num-
ber of nodes reachable from all the sampled sets increases (using a
distributed sum operation) and if not, terminate the loop.

SHS
First we compute the candidate set C by probing degrees of all
nodes and ruling out nodes with degree < 2 and represent C us-
ing a bit vector. This step is batched to reduce network overhead.
Then we sample sets of different sizes (1,2,22,23, . . .) uniformly at
random from the candidate set of vertices. For each sampled set
S, we compute distances of all other nodes to S by growing a ball
around S, until no new nodes are added to the ball (that is, when
distances to all nodes from S have been computed). This step is
also performed in batches.

Performance Evaluation
In this case, the trade-off in using SHS is in memory vs. roundtrips.
The bulk of the relatively large cost of computing the approximate
shortest paths for SHS can be attributed to computing the BFS one
dimension at a time. This constraint arises because the entire sketch
for all the nodes cannot be stored in memory on a single machine.
Such a constraint does not exist in the case of DryadLINQ where
the sketch is stored on disk and read and written in a streaming
fashion, and all the dimensions can therefore be handled concur-
rently. This explains the relative speedup of DryadLINQ compared
to SHS. The SQL Server PDW implementation processes one seed
set at a time and therefore pays a sequential processing penalty that
the DryadLINQ implementation avoids.

5. DISCUSSION AND CONCLUSION
This study compared the efficiency of three paradigms of compu-

tation on very large graphs used in real-world applications. We ex-
plained, using five basic graph algorithms, the effectiveness of each
paradigm. The graph algorithms were chosen in a way to favor dif-
ferent data and computation models. For example, the efficiency of
SALSA hinges on the random access to node data while ASP does
not have such a restriction. In fact, ASP allows a natural streaming
data model and data-parallel computation on this model. We con-
clude that SHS is a good platform choice when random access to
the data is involved and relatively little computation is required (e.g.
SALSA); DryadLINQ is a good choice for data-parallel computa-
tions on streaming data (e.g. PageRank); and is appropriate for sce-
narios where indices can be leveraged or transactions are required.
DryadLINQ provides richer data types (e.g. arrays) and a more
expressive language (C#) to programmers than SQL Server PDW
does with T-SQL; but this flexibility comes at a price: program-
mers can optimize DryadLINQ programs by choosing the number
of stream partitions or annotating user-defined operators with hints
that trigger partial aggregation, but on the flip-side they have to
perform these optimizations to extract the best performance from
the system. SQL Server PDW, on the other hand, is much more of
black box: programmers write their queries in a completely declar-
ative fashion, and the system generates what it believes is the best
query plan.

6. REFERENCES
[1] D. Abadi. Data management in the cloud: Limitations and opportunities.

IEEE Data Engineering Bulletin, 32(1):3–12, 2009.
[2] D. J. Abadi, P. A. Boncz, and S. Harizopoulos. Column oriented database

systems. In VLDB, 2009.
[3] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and

A. Rasin. HadoopDB: An architectural hybrid of MapReduce and DBMS
technologies for analytical workloads. In VLDB, 2009.

[4] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms.
Addison-Wesley, 1983.

[5] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and
S. Venkatasubramanian. The connectivity server: Fast access to linkage
information on the web. In WWW, 1998.

[6] A. Bialecki, M. Cafarella, D. Cutting, and O. O-Malley. Hadoop: A
framework for running applications on large clusters built of commodity
hardware, 2005. http://lucene.apache.org/hadoop/.

[7] P. Boldi and S. Vigna. The webgraph framework I: Compression
techniques. In WWW, 2004.

[8] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. In WWW, 2000.

[9] M. Castellanos, U. Dayal, and T. Sellis. Beyond conventional data
warehousing–massively parallel data processing with greenplum database.
In BIRTE, 2008.

[10] B. V. Cherkassky, L. Georgiadis, A. V. Goldberg, R. E. Tarjan, and R. F. F.
Werneck. Shortest path feasibility algorithms: An experimental evaluation.
In ALENEX, pages 118–132, 2008.

[11] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
algorithms. The MIT press, 2001.

[12] N. Craswell and M. Szummer. Random walks on the click graph. In
SIGIR, pages 239–246, 2007.

[13] A. Das Sarma, S. Gollapudi, M. Najork, and R. Panigrahy. A sketch-based
distance oracle for web-scale graphs. In WSDM, 2010.

[14] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In OSDI, 2004.

[15] J. Dean and S. Ghemawat. MapReduce: A flexible data processing tool.
Commun. ACM, 53(1):72–77, 2010.

[16] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph
problems in a semi-streaming model. Theor. Comput. Sci.,
348(2-3):207–216, 2005.

[17] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph
distances in the data-stream model. SIAM J. Comput., 38(5):1709–1727,
2008.

[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
data-parallel programs from sequential building blocks. In EuroSys, 2007.

[19] J. Kleinberg. Authoritative sources in a hyperlinked environment. In
SODA, 1998.

[20] R. Lempel and S. Moran. The stochastic approach for link-structure
analysis (SALSA) and the TKC effect. Computer Networks,
33(1-6):387–401, 2000.

[21] M. W. Mahoney, L.-H. Lim, and G. E. Carlsson. Algorithmic and
statistical challenges in modern large-scale data analysis are the focus of
MMDS 2008. CoRR, abs/0812.3702, 2008.

[22] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A System for Large-Scale Graph
Processing. In SIGMOD, 2010.

[23] Microsoft SQL Server 2008 R2 Parallel Data Warehouse.
http://www.microsoft.com/sqlserver/en/us/
solutions-technologies/data-warehousing/pdw.aspx.

[24] M. Najork. The scalable hyperlink store. In HT, 2009.
[25] M. Najork, S. Gollapudi, and R. Panigrahy. Less is more: Sampling the

neighborhood graph makes SALSA better and faster. In WSDM, 2009.
[26] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical partitioning

algorithms for database design. ACM Trans. Database Syst.,
9(4):680–710, 1984.

[27] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin:
A not-so-foreign language for data processing. In SIGMOD, 2008.

[28] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab,
1999.

[29] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and
M. Stonebraker. A comparative study of approaches to cluster-based large
scale data analysis. In SIGMOD, 2009.

[30] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data:
Parallel analysis with Sawzall. Scientific Programming, 13(4):277–298,
2005.

[31] K. Randall, R. Stata, J. Wiener, and R. Wickremesinghe. The link
database: Fast access to graphs of the web. In DCC, 2002.

[32] S. D. Servetto and G. Barrenechea. Constrained random walks on random
graphs: Routing algorithms for large scale wireless sensor networks. In
WSNA, 2002.

[33] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin,
N. Tran, and S. Zdonik. C-Store: A column-oriented DBMS. In VLDB,
2005.

[34] M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin. MapReduce and parallel DBMSs: Friends or
foes? Commun. ACM, 53(1):64–71, 2010.

[35] T. Suel and J. Yuan. Compressing the graph structure of the web. In DCC,
2001.

[36] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146–160, 1972.

[37] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive: A warehousing solution over a
Map-Reduce framework. In VLDB, 2009.

[38] Wikipedia. Graph database.
http://en.wikipedia.org/wiki/Graph_database.

[39] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and
J. Currey. DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language. In OSDI, 2008.

