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Abstract. This paper describes a technique for reducing the query-
time cost of HITS-like ranking algorithm. The basic idea is to compute
for each node in the web graph a summary of its immediate neighbor-
hood (which is a query-independent operation and thus can be done
off-line), and to approximate the neighborhood graph of a result set at
query-time by combining the summaries of the result set nodes. This ap-
proximation of the query-specific neighborhood graph can then be used
to perform query-dependent link-based ranking algorithms such as HITS
and SALSA. We have evaluated our technique on a large web graph and a
substantial set of queries with partially judged results, and found that its
effectiveness (retrieval performance) is comparable to the original SALSA
algorithm, while its efficiency (query-time speed) is substantially higher.

1 Introduction

One of the fundamental problems in Information Retrieval is the ranking prob-
lem: how to arrange the documents that satisfy a query into an order such that
the documents most relevant to the query rank first. Traditional ranking algo-
rithms proposed by the pre-web IR community were mostly based on similarity
measures between the terms (words) in the query and the documents satisfying
the query.

In addition to structured text, web pages also contain hyperlinks between web
pages, which can be thought of as peer endorsements between content providers.
Marchiori suggested early on to leverage incoming hyperlinks as another feature
in ranking algorithms [9], and the simplistic idea of merely counting in-links
quickly evolved into more sophisticated link-based ranking algorithms that take
the quality of an endorsing web page into account.

Link-based ranking algorithms can be grouped into two classes: query-
independent ones such as in-link count or Google’s famous PageRank [12], and
query-dependent ones such as Kleinberg’s HITS [4,5] and Lempel & Moran’s
SALSA [6,7]. The aforementioned algorithms were described in seminal papers
that inspired a great deal of subsequent work; however, there has been little pub-
lished work on the effectiveness (that is, the accuracy of the ranking) of these
algorithms.

A recent study using a 17-billion edge web graph and a set of 28,043 queries
with partially judged results concluded that SALSA, a query-dependent link-
based ranking algorithm, is substantially more effective than HITS, PageRank
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and in-degree, although it is not as effective as the state-of-the-art textual rank-
ing algorithm.

Unfortunately, SALSA in particular and HITS-like algorithms in general re-
quire a substantial amount of expense at query-time. The vast fraction of this
expense is devoted to determining the neighborhood graph of the results to a
query; the subsequent computation of scores for the nodes in the neighborhood
graph is cheap in comparison, despite the fact that most HITS-like algorithms
use power iteration to compute the fixed-points of the score vectors. The fact
that HITS-like algorithms incur substantial computational cost at query-time
puts them at a crippling disadvantage to query-independent algorithms such as
PageRank: according to Marissa Mayer, Google’s VP of Search Products & User
Experience, delaying Google’s response time by half a second led to a 20% drop
in query traffic (and revenue) from the user population subjected to the delay [8].

This paper describes a technique that dramatically lowers the query-time cost
of HITS-like ranking algorithms, i.e. algorithms that perform computations on
the distance-one neighborhood graph of the results to a query. The basic idea
is to compute a summary of the neighborhood of each page on the web (an op-
eration that is query-independent and thus can be done off-line, say at index
construction time), and to use these summaries at query time to approximate
the neighborhood graph of the result set and to compute scores using the approx-
imate graph. We have evaluated this approach using the same methodology and
the same data sets that were used in the earlier comparisons of in-degree, Page-
Rank, HITS, and SALSA, and found that applying our technique to SALSA does
not impair its effectiveness and at the same substantially improves its efficiency.

The remainder of this paper is structured as follows: section 2 reviews the
HITS and SALSA algorithms; section 3 explains our technique for summariz-
ing the neighborhood of each web page; section 4 describes the experimental
validation of our technique; and section 5 offers concluding remarks.

2 HITS and SALSA

Both HITS and SALSA are query-dependent link-based ranking algorithms:
given a web graph (V, E) with vertex set V and edge set E ⊆ V × V (where
edges/links between vertices/pages on the same web server are typically omit-
ted), and the set of result URLs to a query (called the root set R ⊆ V ) as input,
both compute a base set B ⊆ V , defined to be:

B = R ∪
⋃

u∈R

{v ∈ V : (u, v) ∈ E} ∪
⋃

v∈R

Sn[{u ∈ V : (u, v) ∈ E}]

where Sn[X ] denotes a uniform random sample of n elements from set X (Sn[X ]=
X if |X | < n). The sampling parameter n will typically be below 100, and its
choice has a significant impact on the effectiveness of SALSA in particular [11].
The neighborhood graph (B, N) consists of base set B and edge set N = {(u, v) ∈
E : u ∈ B ∧ v ∈ B}.
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Both HITS and SALSA compute two scores for each node u ∈ B: an author-
ity score A(u), estimating how authoritative u is on the topic induced by the
query, and a hub score H(u), indicating whether u is a good reference to many
authoritative pages. In the case of HITS, hub scores and authority scores are
computed in a mutually recursive fashion:

1. For all u ∈ B do H(u) :=
√

1
|B| , A(u) :=

√
1

|B| .
2. Repeat until H and A converge:

(a) For all v ∈ B do A′(v) :=
∑

(u,v)∈N H(u)
(b) For all u ∈ B do H ′(u) :=

∑
(u,v)∈N A(v)

(c) For all u ∈ B do H(u) := 1
‖H′‖2

H ′(u), A(u) := 1
‖A′‖2

A′(u)

where ‖X‖2 is the euclidean norm of vector X .
By contrast, SALSA authority scores can be computed independently of hub

scores, which is interesting insofar as that SALSA (and HITS) hub scores are
poor ranking features. The algorithm for computing SALSA authority scores is:

1. Let BA be {u ∈ B : in(u) > 0}

2. For all u ∈ B do A(u) :=
{ 1

|BA| if u ∈ BA

0 otherwise
3. Repeat until A converges:

(a) For all u ∈ BA do A′(u) :=
∑

(v,u)∈N

∑
(v,w)∈N

A(w)
out(v)in(w)

(b) For all u ∈ BA do A(u) := A′(u)

For reasons of space, we omit the algorithm for computing SALSA hub scores;
the interested reader is referred to [6] or [11]. The latter paper compares the
effectiveness of HITS and SALSA, and finds that SALSA authority scores are
a substantially better ranking feature than HITS authority scores. Our experi-
mental validation in section 4 employs the same methodology and data sets.

When performed on a web-scale corpus, both HITS and SALSA require a sub-
stantial amount of query time processing. Much of this processing is attributable
to the computation of the neighborhood graph. The reason for this is that the
entire web graph is enormous. A document collection of five billion web pages
induces a set of about a quarter of a trillion hyperlinks. Storing this web graph
on disk would make lookup operations unacceptably slow due to the inherent
seek time limitations of hard drives. On the other hand, the graph is too big
to be stored in the main memory of any single machine; therefore, it has to be
partitioned across many machines. In such a setup, the cost of a link lookup
is governed by the cost of a remote procedure call (RPC). A sophisticated im-
plementation of the SALSA algorithm against a distributed link database will
batch many lookup operations into a single RPC request to reduce latency and
will query all link servers in parallel, but even so it will require four rounds of
concurrent requests: one round to map the root set URLs to short representa-
tions; the second round to determine the pages linking to the root set; the third
round to determine the pages pointed to by the root set; and the fourth round
to determine the edges induced by the base set. The SALSA implementation
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used to perform the experiments described in [11] required 235 milliseconds per
query for the most effective parametrization of SALSA, and 2.15 seconds per
query for the most expensive parametrization. Over 90% of the time spent was
spent on performing the RPC calls to the link servers in order to assemble the
neighborhood graph, as opposed to computing scores on that graph.

3 Summarizing Neighborhood Graphs

In this paper, we present a technique to substantially lower the query-time cost
of HITS and SALSA. We do so by moving the most expensive part of the com-
putation off-line. At index-construction time, we build a database mapping web
page URLs to summaries of their neighborhoods. At query time, we rank the
results satisfying a query by looking up each result in the summary database (an
operation that requires only one round of RPCs, as opposed to four), approx-
imating the neighborhood graph of the result set based on the neighborhood
summaries of the constituent results, and computing SALSA (or HITS) scores
using that approximation of the neighborhood graph. In the experimental eval-
uation below, we will show that this approximation has no detrimental effect on
the quality of the ranking.

As outlined above, our summary of the neighborhood graph of a web page u
consists of a summary of the ancestors (the pages that link to u) and a summary
of the descendants (the pages that u links to), each consisting of a Bloom filter
containing a limited-size subset of ancestors or descendants plus a much smaller
subset containing explicit web page identifiers (64-bit integers). A Bloom filter
is a space-efficient probabilistic data structure that can be used to test the
membership of an element in a given set; the test may yield a false positive
but never a false negative. A Bloom filter represents a set using an array A of
m bits (where A[i] denotes the ith bit), and uses k hash functions h1 to hk to
manipulate the array, each hi mapping some element of the set to a value in
[1,m]. To add an element e to the set, we set A[hi(e)] to 1 for each 1 ≤ i ≤ k; to
test whether e is in the set, we verify that A[hi(e)] is 1 for all 1 ≤ i ≤ k. Given
a Bloom filter size m and a set size n, the optimal (false-positive minimizing)
number of hash functions k is m

n ln 2; in this case, the probability of false positives
is (1

2 )k. For an in-depth description of Bloom filters, the reader is referred to [1,3].
In the following, we will write BF [X ] to denote the Bloom filter representing
the set X .

While the original SALSA algorithm samples the neighborhood (and in par-
ticular the ancestors) uniformly at random, we use consistent sampling [2]. Let
Cn[X ] denote a consistent unbiased sample of n elements from set X , where
Cn[X ] = X if |X | < n. Consistent sampling is deterministic; that is, when
sampling n elements from a set X , we will always draw the same n elements.
Moreover, any element x that is sampled from set A is also sampled from
subset B ⊂ A if x ∈ B. We define the set In(u) to be a consistent sam-
ple Cn[{v ∈ V : (v, u) ∈ E}] of (at most) n of the ancestors of u; and the
set On(u) to be a consistent sample Cn[{v ∈ V : (u, v) ∈ E}] of n of the
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descendants of u. For each page u in the web graph, we compute a summary
(BF [Ia(u)], Ib(u), BF [Oc(u)], Od(u)).

At query time, given a result set R, we first look up the summaries for all the
results in R. Having done so, we compute a cover set

C = R ∪
⋃

u∈R

Ib(u) ∪
⋃

u∈R

Od(u)

Next, we construct a graph consisting of the vertices in C. We fill in the edges as
follows: For each vertex u ∈ R and each vertex v ∈ C, we perform two tests: If
BF [Ia(u)] contains v, we add an edge (v, u) to the graph; if BF [Oc(u)] contains
v, we add an edge (u, v) to the graph. This graph serves as our approximation
of the neighborhood graph of R; we use it to compute SALSA (or HITS) scores
using the same algorithm as described above in section 2.

Observe that the approximate neighborhood graph differs from the exact
neighborhood graph in three ways:

– In the exact graph, we do not sample the vertices directly reachable from
the root set, but rather include them all.

– The approximate graph only contains edges from C ∩ Ia(u) to u ∈ R and
from u ∈ R to C ∩ Oc(u). In other words, it excludes edges between nodes
in C that are not part of the root set.

– We do not use exact set representations for Ia(u) and Oc(u), but approximate
them by using Bloom filters. This introduces additional edges whose number
depends on the false positive probability of the Bloom filter. Using k hash
functions, we add about 2−k+1|C||R| spurious edges in the graph.

At first glance, it is non-obvious why this approximation of the neighborhood
graph should preserve any of the properties relevant to ranking algorithms. After
all, the approximation may exclude actual edges due to the sampling process,
and add phantom edges due to the potential for false positives inherent to Bloom
filters. However, it is worth noting that consistent sampling preserves co-citation
relationships between pages in the result set. The experimental validation de-
scribed in the following section confirms that the summarization algorithm in-
deed preserves properties relevant to link-based ranking.

4 Experimental Validation

Our experimental validation is based on the two data sets used in [10,11]: a
large web graph with 2.9 billion nodes and 17.7 billion edges, and a set of 28,043
queries, each with 2,838 results on average, 17.3 of which were rated by human
judges on a six-point scale. For more details on how the graph was collected
and how results were judged, the reader is referred to the earlier papers. We use
three popular measures of effectiveness (or retrieval performance): the normalized
discounted cumulative gain (NDCG), the mean average precision (MAP), and
the mean reciprocal rank (MRR) measures. All three measures are normalized
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Fig. 1. Effectiveness of authority scores computed using different parameterizations of
original and approximate SALSA; measured in terms of NDCG, MAP and MRR

to range between 0 and 1; higher values indicate better performance. Again, the
reader is referred to [10,11] for the full definitions of these measures.

In our experiments, we used k = 10 hash functions, and we fixed the param-
eters a and c at 1000; that is, we included a sample of (up to) 1000 ancestors
or descendants into each Bloom filter. The Bloom filters averaged 227 bytes for
ancestor sets and 72 bytes for descendant sets. We measured the effectiveness
of SALSA using our summarization technique for b and d ranging from 2 to 20,
and compared it to original SALSA with the same sampling values. Figure 1
depicts the results. The figure contains three graphs, one for each performance
measure (NDCG, MAP, and MRR). The horizonal axis shows the number of
samples (the b and d parameters of our summarization-based SALSA, and the
n parameter of the original SALSA); the vertical axis shows the retrieval per-
formance. Each graph contains three curves; the blue (dark) curve showing the
performance of the original SALSA; the green (medium) curve shows the perfor-
mance of the original SALSA with consistent instead of random sampling; and
the red (light) curve showing that of our summarization-based version. Using
consistent instead of random sampling substantially improves the performance
under all measures. However, our new approximate version of SALSA outper-
forms the original SALSA algorithm under all measures. Performance is maximal
for b and d between 4 and 5, depending on the measure. For b = d = 5, each
summary is 379 bytes in size (227 bytes for BF [I1000], 40 bytes for I5, 72 bytes
for BF [O1000], and 40 bytes for O5).

Our current implementation of summarization-based SALSA does not yet em-
ploy a distributed summary server; we use our distributed link server to compute
summaries. However, since a summary server is similar to, and indeed simpler
than, a link server, we can draw on our experiences with the latter to estimate
what the query-time performance of a production system would be. We measured
the performance of our current implementation, subtracted the time required to
compute the summaries, and added the time we have observed for retrieving a
vector of links of the size of an average summary from our link server. These mea-
surements suggest that it would take us an average of 171 milliseconds per query
to compute approximate SALSA scores. This compares favorably to the 235
milliseconds per query of our implementation of the original SALSA algorithm.
Moreover, we have not spent any time on optimizing the code for constructing ap-
proximate neighborhood graphs, and believe that further speedups are possible.
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5 Conclusion

This paper describes a technique for reducing the query-time cost of query-
dependent link-based ranking algorithms that operate on the distance-one neigh-
borhood graph of the result set, such as HITS and SALSA. Our technique com-
putes a summary of each page on the web ahead of query-time, and combines
these summaries at query-time into approximations of the neighborhood graph
of the result set. We tested our technique by applying it to a large real web
graph and a sizable collection of real queries with partially assessed results, and
were able to demonstrate that the approximate nature of our technique does not
have any negative impact on the effectiveness (retrieval performance). Future
work includes implementing a distributed summary server and verifying that
our technique is indeed faster than the original (all-online) implementation.
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