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Abstract

This paper describes CAT, a Web-based algorithm ani-
mation system. CAT augments the expressive power of Web
pages for publishing passive multimedia information with a
full-fledged interactive algorithm animation system. It im-
proves on previous Web-based algorithm animations by pro-
viding a framework that makes it easy to construct new an-
imations, including those that involve multiple views. Be-
cause views of the same running algorithm may reside on
different machines, CAT is particularly well-suited for elec-
tronic classrooms. This strategy is an improvement over the
electronic classroom systems we are aware of, which simply
display the same X window on multiple machines. We be-
lieve our framework generalizes to electronic textbooks in ar-
bitrary domains.

1 Background

This paper describes CAT, a system for creating active and
collaborative electronic textbooks. By active, we mean that
the reader can interact with parts of the textbook; by collabo-
rative, we mean that a group of people, such as a teacher and a
set of students in an “electronic classroom” setting, can share
a common interaction experience.

We are particularly interested in computer science educa-
tion. A significant part of computer science deals with the
design and analysis of algorithms. Algorithm animation, the
visualization of the fundamental operations of a running pro-
gram, has proven to be a powerful tool in the teaching of al-
gorithms [13].

Our electronic textbook consists of a set of Web pages. A
Web page can contain not only text and passive multimedia
(e.g. images, movies, and so on), but also “active objects,”
that is, regions of the page that are drawn by programs dy-
namically loaded through the Web [16]. A typical section of
an algorithms textbook describes and analyzes an algorithm;
we use the passive features of the Web page to give this con-
ventional description, and the active features to actually im-

plement the algorithm together with one or more animated,
interactive views of it. A videotape showing CAT in action
is available [5].

The contents of our pages is similar in spirit to Gloor’s
CD-ROM [10], which complements the Corman, Leiser-
son, and Rivest Introduction to Algorithms textbook. A fun-
damental difference is that CAT is collaborative, whereas
Gloor’s system is single-user. A second difference is that
CAT gives the user control over the choice and placement of
views of a program. A third difference is that we use the Web
as our platform; Gloor used Hypercard.

We are not the first to display “animated algorithms” on
Web pages: there are numerous Java applets showing algo-
rithms in action. For example, a nice collection of sorting
algorithms has been compiled by Harrison [11]. However,
these animations are written in an ad hoc fashion, without the
support of an algorithm animation system. As such, they lack
a variety of features, which we shall discuss later.

There are also Web pages that give access to algorithm an-
imations, but the animations are not part of the Web page.
For example, Stasko has a Web page that allows a user to
run XTango on a remote machine, with the display set to the
client’s X workstation, exploiting the network transparency
provided by the X window system [14]. Finally, there are a
variety of MPEG and QuickTime movies of animated algo-
rithms on the Web, such as our animation of Heapsort [3]; ob-
viously, movies are completely passive.

Although not “algorithm animation” per se, we should
mention Ibrahim’s use of the Web as a front-end to (the
logical-equivalent of) a symbolic debugger [12]. The system
allows users to run a program on the Web server, and to in-
sert breakpoints in the code, display the contents of variables,
and advance execution either line by line, or until a break-
point is reached. The display of the variables is text-only, us-
ing HTML forms, and the display is updated by loading new
pages.

Our active objects resemble Java applets in that the code
for algorithms and views is downloaded over the network,
and then executed by and displayed in the Web browser [4].
The innovation of CAT is that it displays multiple, simulta-



Figure 1. An instructor’s workstation, ash.pa.dec.com, during
a lecture on first-fit binpacking.

Figure 2. A student’s workstation when the screen in Fig. 1 was
captured. Note that the student specified the host
ash.pa.dec.com in order to connect with the running algorithm
on that machine.

neously animated views of an algorithm. The views either
may appear on a single page, or on separate pages. More-
over, multiple users viewing the same page will see the same
animation; those views that allow customization can be cus-
tomized differently by each user. Thus, when used in an
“electronic classroom,” an instructor can control an anima-
tion, and students can all view the animation simply by point-
ing their Web browsers at the appropriate page or pages. It is
worth noting that students can, and indeed must, operate their
Web browsers themselves. (Also, CAT is flexible enough
to implement different floor-control schemes, where the in-
structor can transfer the control of the shared animation to in-
dividual students. However, we have not implemented this.)

The approach we’ve taken is in stark contrast to the other
electronic classroom systems we are aware of. The most
common approach is to use an X protocol multiplexor, such
as XMX and Shared-X, which displays an arbitrary X win-
dow on multiple workstations. The advantage of this ap-
proach is that any software can be used without modification.
The drawback is that students are completely passive and that
there is the potential for significant network traffic.

Another difference between CAT and Java-based applets
is the level of programmer support for programming algo-
rithm animations. Java-based algorithm animations are con-
structed in an ad hoc fashion. We follow the programming
model pioneered by BALSA [7], and followed by most algo-
rithm animation systems. In this model, an algorithm is sep-
arated from views, and they are connected by way of “inter-
esting events.” The system provides the glue for relaying the
“interesting events” generated by the algorithm to the views.
CAT also provides a high-level animation library, tailored for
algorithm animation. Finally, CAT provides an algorithm-
independent control panel for starting, pausing, and stopping
the animation, and controlling its speed.

The rest of this paper is organized as follows: The next
section shows CAT in a classroom setting during a lecture on
binpacking algorithms. In Section 3, we show how the bin-
packing animation was implemented. Next, we describe how
CAT is implemented. We conclude by summarizing the con-
tributions of this work.



Figure 3. A user interacting with the chapter on binpacking in an “electronic textbook”.

2 User Perspective

This section shows how CAT might be used during a lec-
ture on binpacking algorithms.

Figs. 1 and 2 show WebScape, a Mosaic-style Web
browser. The instructor’s screen, Fig. 1, displays a Web
page with two views of the algorithm (a “Probes” view,
and below that, a “Packing” view just barely visible) and a
control panel. The control panel contains general controls
(“GO”, “PAUSE” or “RESUME”, and “ABORT” buttons,
and a slider for adjusting the speed of the animation) and
algorithm-specific controls (numeric widgets for specifying
the number of bins and blocks). Fig. 2 shows a student’s
screen at the same time that Fig. 1 was taken. The student is
looking at three views of the same algorithm; these views are
embedded into a different Web page. The control panel is not
part of the student’s Web page; instead, there is a “Glossary”
view showing the number of bins and blocks specified by the

instructor. Below that is the “Probes” view (the block num-
bered 21 is clearly too large to be inserted into the 6th bin, and
it is about to slide over to the 7th bin for consideration) and
the “Transcript” view (showing each event generated by the
algorithm, along with the parameters). The student can scroll
through the “Transcript” view and clear its contents. How-
ever, he cannot control the algorithm; this can only be done
through the control panel, currently displayed on the instruc-
tor’s workstation.

One can imagine a more embellished version of this page.
For example, there might be a link to a page containing
more detailed views, oriented towards students having prob-
lems understanding the program using just the “Probes” and
“Transcript” views. Similarly, there might be a link to a page
with an alternative to the “Packing” view, visible in Fig. 3,
that uses grayscale intensity rather than color hue. Such
a page would be intended for students who are color-blind
or have difficulty perceiving differences in hue. The page



shown in Fig. 2 contains a link to the algorithm source code.
A student can follow this link at any time, and following the
link will not interrupt the animation (of course the animation
won’t be visible until the student returns to this page).

It’s important to realize that an unlimited number of stu-
dents can be viewing this same page. CAT ensures that all
views will be synchronized. The instructor controls how long
each “interesting event” will take using the slider in the con-
trol panel. Animations have the same duration on all com-
puters in the classroom, regardless of the type of machine.
Thus, on low-end machines, fewer frames will be displayed
for a given event than on high-end machines. This is in con-
trast to the window multiplexing approach taken by XMX
and Shared-X, where the least powerful machine determines
the frame rate. In addition, our framework makes little de-
mand on the network, because the only network traffic are the
parameters to each event.

Another benefit of our framework over XMX and Shared-
X is that each student has interactive control over the views
he is seeing. For example, he can scroll through the “Tran-
script” view and clear its contents without affecting the
“Transcript” view seen by any other student. A more embel-
lished “Probes” view might allow a student to customize the
display, for example, by adding color to the blocks.

Fig. 3 shows a different set of Web pages for first-fit bin-
packing. These pages are displayed using DeckScape [6],
a Web browser that shows different Web pages in different
windows. The page in the upper left contains links to five
other pages, three of which are currently visible, and a con-
trol panel. This figure shows a typical configuration that a
student would encounter when using CAT as an “electronic
textbook” for self-study. The Web pages are clearly different
from those in Figs. 1 and 2; however, the active objects are
exactly same.

3 Author Perspective

Our framework follows the BALSA approach: Strategi-
cally important points of an algorithm are annotated with pro-
cedure calls that generate “interesting events.” These events
are reported to an event manager, which in turn forwards
them to all registered views. Each view responds to interest-
ing events by drawing appropriate images.

The task of animating an algorithm can be divided into
three steps. The first step is to identify the interesting events.
The second is to implement the algorithm and annotate it with
the interesting events. The final step is to implement one or
more views. The algorithm and the views are implemented
in Obliq, an interpreted object-oriented language [8].

In our Web-based setting, we also need to create Web
pages that contain the algorithm and the views.

The remainder of this section elaborates on these steps, us-
ing the first-fit binpacking algorithm as a running example.

3.1 The Events

The “interesting events” for binpacking algorithms are de-
fined as follows:

setup (nBins[fmt_int], nBlocks[fmt_int])
newBlock (wt[fmt_real])
probe (b[fmt_int])
pack ()

An event definition consists of the name of the event, fol-
lowed by a list of parameters. Each parameter is annotated
with a procedure for converting its value into a string. The
procedures fmt_int and fmt_real are predefined for
converting integers and reals to strings.

Thesetup event is generated once at the beginning to de-
fine the number of available bins and the number of blocks
to be packed. Each block weighs between 0 and 1 units. The
bins are numbered starting at 0, and each bin can hold at most
1 unit of weight. The newBlock event is generated when-
ever the algorithm gets a new block to pack; the weight of the
new block is wt. The probe event is generated when the al-
gorithm checks bin b to see if the new block can be added to
it. The pack event is generated when the algorithm decides
to add the new block to the bin most recently probed.

The following regular expression defines the output event
stream of interesting events generated by a binpacking algo-
rithm:

setup (newBlock probe+ pack)*

When designing an algorithm animation, there is no right or
wrong set of events, just as there is no right or wrong way to
break a large system into procedures. We usually choose to
have narrow interfaces, that is, we use as few parameters as
possible for each event. As a result, some views may need to
maintain state that is already being maintained by the algo-
rithm. For example, the “Probes” view we shall show later
needs to maintain the utilization of each bin, information that
is also maintained by the algorithm.

3.2 The Algorithm

In our framework, an algorithm is defined through an
Obliq object named alg. This object must have two fields:
vbt and go.

The vbt field is bound to an algorithm-specific input
panel that will be incorporated into the control panel; in this
example, the definition of the panel is loaded from the rela-
tive URL “alg.fv”. We’ll look at the contents of “alg.fv” later;
for now, it suffices to say that it contains two numeric wid-
gets, named bins and blocks, which are used for specify-
ing the number of bins and blocks, respectively.

The go field is bound to a method that is called when
the user hits the “GO” button in the control panel. This
method implements the algorithm as one would find it in a
text book, along with the annotations for generating the in-
teresting events.



let alg = {
vbt => form_fromURL(BaseURL & "alg.fv"),

go =>
meth (self, z)
let numBins = form_getInt(self.vbt, "bins");
let numBlocks = form_getInt(self.vbt, "blocks");
z.setup(numBins, numBlocks);

let totals = array_new(numBins, 0.0);
for block = 0 to numBlocks-1 do

let amt = real_float(random_int(20, 90))*0.01;
z.newBlock(amt);
var bin = 0;
loop

z.probe (bin);
if (totals[bin]+amt)<=1.0 then exit end;
bin := bin+1;
if bin is numBins then exit end;

end;
if bin is numBins then exit end;
totals[bin] := totals[bin] + amt;
z.pack();

end;
end

};

The go method takes two parameters: self refers to the
object in which the method is contained, and z is the anima-
tion event manager object. This object is responsible for for-
warding interesting events to all registered views, and return-
ing control to the algorithm only after all views have com-
pleted their animations.

The first few lines of the method retrieve the numbers of
bins and blocks specified by the user, and then generate a
setup event.

For the sake of completeness, here is
the contents of “alg.fv”, which defines the algorithm-specific
input panel. The user-interface specification is written using
FormsVBT [1]:
(VBox
(HBox

(Text RightAlign "Number of bins: ")
(Shape (Width 70) (Numeric %bins (Min 1) =10)))

(Glue 5)
(HBox

(Text RightAlign "Number of blocks: ")
(Shape (Width 70) (Numeric %blocks (Min 1) =20))))

3.3 The Views

This section examines the “Probes” view from before.
This view uses a GraphVBT widget [9]. GraphVBT is a high-
level animation package based on the metaphor of a graph
consisting of vertices and edges. Each vertex has various at-
tributes, such as position, size, shape, color, border width,
and label. An edge connects two vertices, and it has attributes
such as color and thickness. Vertices can be repositioned, and
such movement is shown by smooth animation, inspired by
the Tango system [15].

In our framework, a view is defined through an Obliq ob-
ject named view. This object must have a field vbt (in this
case, bound to a GraphVBT widget), and methods for each
interesting event. Here is the code:

let view = {
vbt => graph_new(),

currVertex => ok,
currWt => ok,
lastProbe => ok,
totals => ok,

setup =>
meth (self, nBins, nBlocks)
self.totals := array_new(nBins, 0.0);
graph_clear(self.vbt);
graph_setWorld(self.vbt, -2.0, float(nBins), 2.0, 0.0);
let v0 = graph_newVertex(self.vbt);
graph_setVertexSize(v0, 0.0, 0.0);
graph_moveVertex(v0, -10.0, 1.0, false);
let v1 = graph_newVertex(self.vbt);
graph_setVertexSize(v1, 0.0, 0.0);
graph_moveVertex(v1, float(nBins)+10.0, 1.0, false);
let e = graph_newEdge(v0, v1);
graph_setEdgeWidth(e, 0.01);
graph_redisplay (self.vbt);

end,

newBlock =>
meth (self, wt)
let v = graph_newVertex (self.vbt);
graph_setVertexSize(v, 1.0, wt);
graph_setVertexColor(v, "VeryLightGray");
graph_setVertexBorder(v, 0.01);
graph_moveVertex(v, -1.0, wt/2.0, false);
graph_redisplay(self.vbt);
self.currVertex := v;
self.currWt := wt;

end,

probe =>
meth (self, b)
let xpos = 0.5 + float(b);
let ypos = self.totals[b] + (self.currWt/2.0);
graph_moveVertex(self.currVertex, xpos, ypos, true);
graph_animate(self.vbt, 0.0, 1.0);
self.lastProbe := b;

end,

pack =>
meth (self)
let b = self.lastProbe;
self.totals[b] := self.totals[b] + self.currWt;
graph_setVertexColor(self.currVertex, "Pink");
graph_redisplay(self.vbt);

end,
};

The setup method does three things: First, it initializes
an array, totals, which holds the current utilization of the
bins. Second, it initializes the GraphVBT widget, that is,
it blanks the widget’s display and then defines a world co-
ordinate system. Third, it draws a horizontal line, midway
through the widget. The line indicates the maximum capac-
ity of each bin.

The newBlock method creates a new GraphVBT vertex
for the new block. The shape is rectangular by default, the
width is set to 1, the height is set to wt, the color is set to a
light gray, and the vertex has a black border whose width is
0.01. The vertex is then positioned at the far left and made
visible. Finally, we store a handle to the vertex and to the
block’s weight (so other events can reposition and recolor the
vertex).

The probe method moves the vertex representing the
new block to the top of bin b. This movement is animated
smoothly; its speed is determined by the setting of the slider



in the control panel. We then record the bin being probed, for
use by the pack event.

Finally, thepackmethod increments the utilization of the
bin most recently probed by the weight of the new block. It
then changes the color of the vertex corresponding to the new
block to pink, and updates the display.

3.4 The HTML

CAT uses the file of interesting events to generate a num-
ber of auxiliary objects, such as the animation control object
we mentioned before.

In particular, CAT generates “proxy objects” for each al-
gorithm and view object. These proxy objects hide the in-
tricacies of algorithm-view communication and distributed
computations from the author of the algorithm animation.
Given an event file “BP.evt” and an algorithm file “alg.obl,”
CAT creates the file “BPalg.obl” that contains the proxy
object for the algorithm. Similarly, there will be a file
“BPview.obl” generated for a view in the file “view.obl.”

The display of an algorithm proxy object shows the con-
trol panel and the algorithm-specific input panel. The dis-
play of the view proxy object shows the view’s display (e.g.,
a GraphVBT widget) and a type-in field for identifying the
machine on which the algorithm is running.

It is the proxy objects that are actually embedded into Web
pages. The markup for putting the proxy object stored at
URL “BPalg.obl” into a document is:

<insert code="BPalg.obl" type="application/x-oblet">
</insert>

The insert tag also supports a variety of standard at-
tributes, such as suggested dimensions, border size, and
alignment. If suggested dimensions are not specified, the pre-
ferred dimensions of the display of the proxy object are used.

4 System Perspective

At the heart of CAT is a family of Web browsers that sup-
port active objects written in Obliq. The most distinguish-
ing feature of Obliq is that it has distributed scope: objects
can reside in different address spaces and on different ma-
chines, and are accessed in a uniform fashion regardless of
where they reside. Obliq’s inherent support for distributed
computations makes it easy to write active objects that col-
laborate with one another. We call our active object Oblets
(Obliq applets).

The proxy objects we mentioned earlier for the algorithm
and for the views are actually Oblets. CAT uses the event def-
inition file and the user-supplied alg and view object files
to generate files containing these Oblets. CAT also generates
a “Transcript” view from the event definition file.

In addition to the algorithm and view Oblets, there is an
animation control object (the z parameter to the algmethod

in Section 3.2), also generated from the event definition file.
The animation control object resides on the machine where
the algorithm Oblet runs, and its primary purpose is to com-
municate information from the algorithm to the views. To
do this, the algorithm control object maintains a list of view
Oblets, and provides a collection of methods that correspond
to each interesting event. Here is the body of a method cor-
responding to the interesting event named foo:
foo =>
meth (self, arg1, arg2, ...)
let thrds =
foreach v in self.views map
fork(proc() v.view.foo(arg1, arg2, ...) end, 0)

end;
foreach t in thrds do join(t) end;
...

end,

The method iterates through the array of view Oblets, and
forks a thread per Oblet. These threads call the foo method
on each user-defined view. Next, the method waits until all of
the threads have completed. Before returning control to the
algorithm, the method checks if the user hit the “PAUSE” or
“ABORT” buttons. If the user hit the “PAUSE” button, the
method blocks until the “RESUME” button is hit. If the user
hit the “ABORT” button, an exception is raised, which causes
the algorithm to terminate. Complete details are presented in
Section 4.2.

We should emphasize that the statement v.view.foo
is actually extremely powerful. On the surface, it appears
to be rather boring: invoke the method foo on the object
v.view. However, because of Obliq’s distributed nature,
this object does not need to reside on the same machine where
the caller to foo (i.e., the animation control object) resides.
In the electronic classroom setting, the algorithm Oblet and
the animation control object reside on the instructor’s ma-
chine, and view Oblets reside on both the instructor’s and the
students’ machines.

The remainder of this section provides more details about
Oblets, and about the Oblets that are generated from the user-
supplied alg and view object files.

4.1 Oblets in a Nutshell

An Oblet is an Obliq program that defines a variable
named oblet. This variable must contain an Obliq object
with at least two fields: vbt and run. The vbt field is
bound to a widget that will be installed in the Web page when
the page containing the Oblet is loaded. The run field is
bound to a method that is invoked just after the vbt field is
evaluated.

As mentioned above, Obliq is an inherently distributed
language. Obliq objects can be distributed over heteroge-
neous machines across the Internet. The only statements that
are specific to distribution are net_export, which exports
an object to remote parties (through the mediation of a name-
server), and net_import, which imports a remote object
from a nameserver. Once a remote object is imported, it is



Web page showing the server Oblet:

Description of the server Oblet’s user interface:
(Radio %ColorChoice

(VBox
(Choice %Red "Red")
(Choice %Green "Green")
(Choice %Blue "Blue")
(Choice %Black "Black")))

Obliq code for the server Oblet:
let oblet = {

vbt => form_fromURL(BaseURL & "server.fv"),
client => {changeColor => meth(self, col) end},
run =>
meth(self)

let cb = proc(fv)
let col = form_getChoice(fv, "ColorChoice");
self.client.changeColor(col)

end;
form_attach(self.vbt, "ColorChoice", cb);
net_export("ColOblet", "ash.pa.dec.com", self);

end
};

Web page showing the client Oblet:

Description of the client Oblet’s user interface:
(Shape (Width 200) (Height 100) (LabelFont (PointSize 480))
(Text %Col (BgColor "Black")(Color "White") "Black"))

Obliq code for the client Oblet:
let oblet = {
vbt => form_fromURL(BaseURL & "client.fv"),
changeColor =>
meth(self, col)
form_putColorProp(self.vbt, "Col", "BgColor", col);
form_putText(self.vbt, "Col", col)

end,
run =>
meth(self)
let server = net_import("ColOblet", "ash.pa.dec.com");
server.client := self;

end
};

indistinguishable from a local object. Thus, from a program-
mer’s perspective, there is no difference between local and
remote objects.

The top of this page shows a simple distributed applica-
tion that illustrates the fundamentals of Oblets. The appli-
cation consists of two Oblets running on two different ma-
chines. One Oblet, the server, allows a user to select one of
four colors. The other Oblet, the client, displays the name of
the chosen color inside a rectangle of that color.

The screen dump on the left shows the Web page con-
taining the server Oblet. The Oblet’s user interface con-
sists of four radio buttons, labeled “Red,” “Green”, “Blue,”
and “Black.” The FormsVBT description of this user inter-
face consists of a Radio component containing a vertical
arrangement of four Choice components. The Radio is
named ColorChoice, and the Choices are named Red,
Green, Blue, and Black.

The oblet object of the server Oblet has a field named
client, in addition to the requiredvbt andrunfields. The

vbt field contains a form based on the above FormsVBT de-
scription. The client field is initialized to an object with
one method, changeColor, which does nothing. The run
field is a method that first defines a callback procedure named
cb, attaches this callback to the Radio component, and fi-
nally exports the oblet object under the name ColOblet
to the nameserver on machine ash.pa.dec.com.

The callback procedure cb is invoked each time the user
clicks on a radio button in the server Oblet. The proce-
dure calls form_getChoice to determine which button
was pressed. This call returns the name of the Choice
component, i.e., the string Red, Green, Blue, or Black.
The callback then calls the changeColor method of the
client field, passing the selected color. Initially, this is a
no-op (since the changeColor method does nothing); as
we shall see, the client field will be changed to refer to
the client oblet object, once the client’s Oblet is created.

The screen dump on the right shows the Web page con-
taining the client Oblet. The Oblet’s user interface consists



of a colored rectangle surrounding a string. The FormsVBT
description of this user interface consists of a Text compo-
nent named Col, constrained to be 200 by 100 points, and
showing the string “Black” in a 48.0 point font, white on a
black background.

The oblet object of the client Oblet has a field named
changeColor, in addition to the required vbt and
run fields. The vbt field contains a form based on the
FormsVBT description above. The run method imports the
server’s oblet object from the nameserver, and then over-
rides that object’s client field to refer to the client oblet.
That is, in the statement

server.client := self;

the object server resides on the server machine, while
self resides on the client machine. After this statement is
executed, the server’sclient field refers to an object on the
client machine. Consequently, the statement

self.client.changeColor(col);

executed by the server’s callback procedure, invokes the
changeColor method on the client’s machine. This
method takes the obligatory self parameter and a param-
eter col. Since changeColor is invoked by cb, the col
parameter will be the string Red, Green, Blue, or Black.
The changeColormethod calls form_putColorProp
to change the background color property of its Text com-
ponent, and then calls form_putText to change the string
that is displayed.

4.2 The Algorithm Oblet

The file generated for the algorithm, say “BPalg.obl,” con-
tains three parts: The first part is the algorithm control object,
z. The second part is the algorithm code supplied by the au-
thor, that is, the object alg shown in Section 3.2. The third
part is oblet, the active object that can be embedded into a
Web page. So the structure of “BPalg.obl” is as follows:

let z = {...};
let alg = {...};
let oblet = {...};

For didactic reasons, we will first look at the Oblet, and then
the animation control object.

The algorithm Oblet shows the generic control panel and
the algorithm-specific controls. The run method has three
purposes. It exports the animation control objectz to a name-
server running on the local machine; it installs the algorithm-
specific controls into the generic control panel; and it defines
and attaches callback procedures to the widgets in the generic
control panel. The widgets are the “GO”, “PAUSE” or “RE-
SUME,” and “ABORT” buttons, and the speed slider. Here
is the algorithm Oblet code:

let oblet = {
goThread=> ok,

vbt => form_fromURL(BaseURL & "controlPanel.fv"),

run =>
meth(self)

let goCallback =
proc(fv)
self.goThread := thread_fork(proc()
z.paused := false;
form_putReactivity(fv, "go", "dormant");
form_putReactivity(fv, "pause", "active");
form_putReactivity(fv, "abort", "active");
try alg.go(z) except thread_alerted => end;
form_putReactivity(fv, "go", "active");
form_putReactivity(fv, "pause", "dormant");
form_putReactivity(fv, "abort", "dormant");
form_putText(fv, "pauseText", "PAUSE");
end, 0);

end;

let abortCallback =
proc(fv)
thread_alert(self.goThread);

end;

let pauseCallback =
proc(fv)
lock z.mu do
if z.paused then signal(z.cond) end;
let label =
if z.paused then "PAUSE" else "RESUME" end;

form_putText(fv, "pauseText", label);
z.paused := not(z.paused);

end;
end;

let speedCallback =
proc(fv)
let s = form_getInt(fv, "speed");
graph_setSpeed(float(110-s)*0.01);

end;

form_putGeneric(self.vbt, "algInput", alg.vbt);

form_attach(self.vbt, "go", goCallback);
form_attach(self.vbt, "abort", abortCallback);
form_attach(self.vbt, "pause", pauseCallback);
form_attach(self.vbt, "speed", speedCallback);
speedCallback(self.vbt);

net_export("BP", "localhost", z);

end,
};

The goCallback forks a thread which invokes the go
method of the user-supplied algorithm object. Before calling
thegomethod, thepausedflag is set to false, indicating that
the algorithm is not paused, and the “PAUSE” and “ABORT”
buttons are activated while the “GO” button is deactivated.
As we shall see, pressing the “ABORT” button causes the
thread_alerted exception to be raised. The call to go
is surrounded by an exception handler that catches this ex-
ception. After the go method completes, possibly because it
was aborted by the user, the “GO” button is again activated,
the “PAUSE” and “ABORT” buttons are deactivated, and the
thread terminates.

The abortCallback is simple: it sets the “alert” flag
of the thread in which the algorithm is running.



The “PAUSE” button is used for pausing the algorithm
and resuming it again. Initially, the algorithm is running,
the button is labeled “PAUSE”, and the paused flag is
false. Pressing the button causes the pauseCallback
to be called. The label is changed to “RESUME” and the
paused is set to true. As we shall see, this will cause the al-
gorithm thread to block on a condition variable when the next
interesting event occurs. Pressing the button again causes the
condition variable to be signaled (thereby resuming the algo-
rithm thread), the label to be changed back to “PAUSE,” and
the paused flag to be set to false.

The speedCallback, called when the user manipu-
lates the speed slider, changes the speed of the animation.

Finally, here is the definition of the algorithm control ob-
ject, z, generated by CAT.
let z = {

mu => mutex(),
cond => condition(),
paused => ok,
views => [],

registerView =>
meth (self, view)

self.views := self.views @ [view];
end,

unregisterView =>
meth (self, view)

array_removeElement(self.views, view);
end,

setup =>
meth (self, nBins, nBlocks)

let thrds =
foreach v in self.views map

fork(proc() v.view.setup(nBins, nBlocks) end, 0)
end;

foreach t in thrds do join(t) end;
if thread_testAlert() then raise(thread_alerted) end;
lock self.mu do

if self.paused then
thread_alertWait(self.mu, self.cond)

end
end;

end,

newBlock => meth (self, wt) ... end,
probe => meth (self, b) ... end,
pack => meth (self) ... end,

};

The object contains a number of algorithm-independent
fields and methods, followed by one method for each interest-
ing event. The first fields are used to implement the “PAUSE”
and “RESUME” functionality. The views field is an ar-
ray of view Oblets; these Oblets are registered when a user
opens a Web page containing a binpacking view and connects
to the machine where z resides. The registerView and
unregisterView methods maintain the views array.

Recall that the user-defined alg object calls z.setup
for communicating information to the views. The setup
method of z iterates through the array of view Oblets,
and forks off a thread per Oblet. These threads invoke
the setup method on the user-defined view object. The
foreach ... map ... end construct returns an array,
which in this case contains handles to the forked threads.

Next, setup waits until all the threads have completed.
It is worth pointing out that the Oblets contained in

the views array may reside on different machines. The
inherently distributed semantics of Obliq makes the loca-
tion of an Oblet transparent to the programmer; calling
v.view.setupworks regardless of whether v.view is a
local or remote object.

The next line handles the “ABORT” functionality: As we
saw, pressing the “ABORT” button causes the “alert” flag to
be set. setup checks if the flag has been set, and if so, raises
an exception. The raising of the exception will cause the al-
gorithm to terminate, by transferring control to the exception
handler in the goCallback shown above.

Finally, we handle the “PAUSE” and “RESUME” func-
tionality: As we saw, pressing the “PAUSE” button causes
the paused flag to be set to true. setup checks if this flag
is true, and if so, blocks on a condition variable. The call to
thread_alertWaitwill return when the condition vari-
able is signaled or when the thread is alerted.

The contents of the other event methods, newBlock,
probe, and pack are similar to the setup method, with
setup being replaced by the names of the other events, and
the parameter lists being changed accordingly.

4.3 The View Oblet

The file generated for a view, say “BPview.obl,” contains
two parts: The first part is the view code supplied by the au-
thor, that is, the object view shown in Section 3.3. The sec-
ond part is the Oblet that can be embedded into a Web page;
this code is as follows:
let oblet = {
view => view,
z => ok,
host => "** unconnected **",
vbt => form_fromURL(BaseURL & "viewframe.fv"),

run =>
meth (self)

let newHost =
proc (hostName)
let old = self.z;
try
self.z := net_import ("BP", hostName);
self.z.registerView (self);
if old isnot ok then
old.unregisterView(self);

end;
self.host := hostName;

except net_failure =>
end;
form_putText(self.vbt, "host", self.host);

end;

let hostCallback =
proc(fv)
newHost(form_getText(fv, "host"))

end;

form_putGeneric(self.vbt, "contents", view.vbt);
form_attach(self.vbt, "host", hostCallback);
newHost("localhost");

end,
};



The view Oblet, like any Oblet, has a vbt field and a run
method. In addition, it has a field view, which is set to the
user-specified view object, a field z, which will be bound to
an animation control object, and a field host, the name of
the machine on which z resides.

Thevbt field, the widget displayed in the Web page, con-
sists of a type-in field named host for specifying the ma-
chine on which the animation control object resides and the
view-specific widget (e.g., a GraphVBT).

The run method installs the view-specific widget, at-
taches the callback hostCallback to host, and calls the
procedure newHost, which tries to import the animation
control object from the nameserver on the local machine.

ThehostCallback retrieves the contents of the type-in
field and passes it to newHost.

The newHost procedure tries to import an anima-
tion control object from the nameserver on the machine
hostName. If successful, the view is registered with the
new animation control object. If the view had previously
been registered with another animation control object, it will
be unregistered. newHost then caches the name of the host.
Finally, regardless of whether the import succeeded or not,
the type-in field is set to the contents of the host field. In
this way, the type-in field will always show whether the view
is connected, and if so, to which machine.

5 Conclusion

This paper has described CAT, a Web-based algorithm an-
imation system.

CAT improves on classical algorithm animation systems
(e.g., BALSA, TANGO, Zeus) by combining the power of
Web pages for publishing passive multimedia information
with interactive algorithm animations.

CAT improves on previous Web-based algorithm anima-
tions (e.g., Java applets) in that the same running algorithm
can be viewed on multiple machines. This feature makes
CAT particularly well-suited for an electronic classroom set-
ting. Moreover, we provide the same level of high-level sup-
port for producing algorithm animations as is found in bona
fide algorithm animation systems. CAT improves on Gloor’s
Hypercard-based electronic textbook for the same reasons.

Finally, CAT improves on existing electronic classroom
software by supporting a higher-level notion of collaboration
than the standard technique of multiplexing X windows.

Although we have presented CAT in the context of algo-
rithm animation, we believe that the technique is applicable
to other domains amenable to computer animation and simu-
lation.
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