
Multi-view Embedding-based Synonyms for Email Search

Cheng Li†, Mingyang Zhang†, Michael Bendersky†, Hongbo Deng‡∗, DonaldMetzler†, Marc Najork†

†Google, USA
‡Alibaba Inc., China

{chgli,mingyang,bemike}@google.com,arcatdeng@gmail.com,{metzler,najork}@google.com

ABSTRACT
Synonym expansion is a technique that adds related words to search
queries, which may lead to more relevant documents being re-
trieved, thus improving recall. There is extensive prior work on
synonym expansion for web search, however very few studies have
tackled its application for email search. Synonym expansion for pri-
vate corpora like emails poses several unique research challenges.
First, the emails are not shared across users, which precludes us
from directly employing query-document bipartite graphs, which
are standard in web search synonym expansion. Second, user search
queries are of personal nature, and may not be generalizable across
users. Third, the size of the underlying corpora from which the
synonyms may be mined is relatively small (i.e., user’s private email
inbox) compared to the size of the web corpus. Therefore, in this
paper, we propose a solution tailored to the challenges of synonym
expansion for email search.We formulate it as a multi-view learning
problem, and propose a novel embedding-based model that joins
information from multiple sources to obtain the optimal synonym
candidates. To demonstrate the effectiveness of the proposed tech-
nique, we evaluate our model using both explicit human ratings as
well as a live experiment using the Gmail Search service, one of the
world’s largest email search engines.

KEYWORDS
embedding; synonym expansion; personal search; email search
ACM Reference Format:
Cheng Li, Mingyang Zhang, Michael Bendersky, Hongbo Deng, Donald
Metzler, Marc Najork. 2019. Multi-view Embedding-based Synonyms for
Email Search. In Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’19), July 21–25,
2019, Paris, France. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3331184.3331250

1 INTRODUCTION
When using a search engine, users expect that their (usually very
short) queries will be sufficient to retrieve desired and relevant
information. In practice, this requires the search engine to bridge
the semantic gap between the relevant document text and the query
∗Work done while at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6172-9/19/07.
https://doi.org/10.1145/3331184.3331250

text. Query expansion, which is the process of reformulating a query
to improve matching, has been proposed as an effective method for
bridging this gap [24, 50]. Common techniques for query expansion
include synonym expansion, word stemming, correcting spelling
errors and term re-weighting.

Synonym expansion is an important query expansionmethod [45,
58]. Synonym expansion adds related words to search queries, aim-
ing at bridging the semantic gap and retrieving more relevant doc-
uments. These documents would otherwise not be retrieved by the
original query, and thus, synonym expansion can positively affect
the document recall.

There is extensive prior work on synonym expansion for web
search [20, 37, 50, 52], where abundant information can be utilized,
including the entire web corpus and search logs. For example, many
techniques rely on the bipartite query-document click graph to
expand the query [19, 20, 52, 64]. Most recently with the success
of embedding-based methods and deep learning techniques, query
expansion has been further improved by considering terms that are
close in the embedding space [22, 41, 54].

Compared with the large amount of prior work on synonym
expansion for web search, the research on synonym expansion for
email search is still at a nascent stage [41]. This is despite the fact
that a large number of users are relying on email search on a daily
basis to access their emails [13, 59]. It is not uncommon in the
email search setting for users to type a query, hoping to retrieve an
email they once saw, with no result being returned. In this situation,
users exert mental effort to come up with the right set of keywords,
experiment with various queries, and many of them finally give up,
which ultimately leads to user dissatisfaction and frustration with
email search [13].

This situation calls for more research efforts to improve the
email search experience, with synonym expansion being one of the
most important techniques. However, several challenges need to be
resolved to enable successful application of synonym expansion to
email search. First, emails are not shared across users. This results
in sparsity of click information, posing difficulties for methods that
rely on clicks to derive synonyms. This sparsity also makes it almost
impossible to build a query-document bipartite graph, which is a
standard approach in web search synonym expansion [2].

Second, user search queries are of personal nature, and may not
generalize across users. Unlike web users who are more likely to
use similar queries to access the public web corpus, users in email
search may compose totally different queries to retrieve documents
from their own corpus. For example, an email user might issue
a query like john smith schedule to retrieve an email about John
Smith’s schedule, while most other users would have never issued
this query. This query sparsity problem introduces many long-tail

https://doi.org/10.1145/3331184.3331250
https://doi.org/10.1145/3331184.3331250
https://doi.org/10.1145/3331184.3331250

queries, making it difficult to use expansion methods that directly
rely on data aggregation across queries.

Third, compared with the size of the public web corpus, the size
of each individual private corpus is much smaller. This hinders
mining synonyms directly from the underlying corpus [5], and
further exacerbates the data sparsity problem.

Finally, due to the sensitive nature of private data, it is impossible
to apply the various mining and learning techniques directly to the
private queries and documents, as doing so could leak potentially
sensitive information. Instead, to preserve privacy, we only use a
limited number of n-grams from each query and email subject. No
information from email body is ever processed. Moreover, each n-
gram we use is k-anonymized, that is, it should be frequent enough
to be contained in query logs of sufficiently many users [3, 21].
In addition, the maximum size n of the n-grams is set to a very
small value, and only a set of frequent n-grams can be used with-
out sequence information. All of these strict requirements protect
users’ privacy, while drastically reduce the amount of information
available for learning.

As a workaround to these constraints, we might consider di-
rectly employing synonyms derived from a public external source,
e.g., WordNet [58]. However, such an approach may not always
be optimal for email search, which may contain specialized and
idiosyncratic vocabulary. In addition, there may be a shift in seman-
tics when moving from public to private domains. For instance, the
synonyms for the term target in WordNet are terms like aim, mark
and prey. However, when issuing the query target invoice in email
search, most people intend to retrieve orders from the Target store,
rather than documents that mention these WordNet synonyms.

Accordingly, to address all of the aforementioned challenges, we
propose a novel multi-view embedding-based model that joins in-
formation from multiple information sources to obtain the optimal
set of synonym candidates, and empirically evaluate this model
using both offline data sets and live experiments via Gmail Search,
one of the world’s largest email search engines.

For offline evaluation, we consider a list of strong baselines,
which either rely on external publicly available resources, or email
search logs, including embedding basedmethods and classical query
expansion methods that are based on click graphs.

For online experiments, in addition to comparingwith the strongest
baseline from offline evaluation, we include the synonyms used
by Google Web Search as an additional, highly competitive, base-
line [43]. This is a comprehensive list of synonyms developed for
decades at Google; the synonyms were derived by various propri-
etary state-of-the-art algorithms that are based on user sessions,
clicks, etc.

The detailed contributions of this paper are as follows.

• We propose to address the data sparsity challenge by em-
bedding queries into different search contexts, so that the
queries can be viewed from different perspectives. Specifi-
cally, we represent queries by their clicked documents, users
who issued them, and neighboring queries in a search ses-
sion. In this way, different views of search activity provide
complementary information, alleviating the sparsity prob-
lem.

• To fully utilize the information from each view, we specifi-
cally design an embedding-based model, which is able to dis-
cover both syntactically and semantically related synonyms.
We then join the information learned from each view via
label-propagation based filtering and learning-to-rank.

• We empirically evaluate our models, and demonstrate that
the synonyms discovered by our model significantly outper-
form the candidate synonyms found by strong, both publicly
available as well as proprietary, baselines in both offline
evaluation as well as in a live experiment using one of the
world’s largest email search engines.

It is also worth noting that though we focus on email search in
particular, our proposed method is general enough to be applied
to other personal search scenarios, including (but not limited to)
cloud file storage, mobile device data and personal media search.

2 RELATEDWORK
Query expansion has been extensively studied in the information
retrieval literature [15, 53]. It broadens queries by adding additional
terms or phrases to improve recall and precision. Synonym expan-
sion, as an important component of query expansion, has attracted
the attention of the research community. Our work is focused on
embedding-based synonym expansion for email search, which can
be easily applied to personal search. It is broadly related to three
research fields: (a) query expansion for general search applications,
(b) deep learning for query expansion, and (c) query expansion for
personal search. In what follows, we provide a brief survey of these
research fields.

2.1 Query expansion for general search
applications

One common technique to find synonyms is to use a thesaurus, e.g.,
WordNet [29, 45, 58]. These curated knowledge resources can be
used to find semantically similar terms to the query. Correlations
between terms can be extracted from the document corpus itself as
well [37, 50]. Search logs have been another important source to
mine various types of information: queries in one session are likely
to be related [25, 34, 39], clicked documents can be used to extract
the expansion terms [20, 52], and query-click bipartite graphs can
be constructed to find more terms [2, 16]. Another technique for
query expansion utilizes the retrieved documents of a query for
relevance feedback [19, 55] or pseudo-relevance feedback [18, 62].

2.2 Deep learning for query expansion
Deep neural models have been successfully applied to the domain
of information retrieval [48, 66, 67]. Many models based on deep
learning techniques have been developed for ranking based on click-
through data [8, 35, 44, 56]. There are also a few attempts to apply
embedding based approaches for query expansion. The general
idea is that words with similar embeddings could be related, and
synonyms can be discovered based on a similarity threshold using
machine learning. In [42, 54], word2vec [47] is directly applied to
the entire document corpus for query expansion. Diaz et al. [22]
demonstrate that a word2vecmodel trained on documents related to
the topic of the query achieves better performance than one trained
on the global corpus. Grbovic et al. [30] proposed a context-aware

embedding approach for query rewriting in sponsored search by
treating a search session as a “sentence” and queries within the
session as “words” along with word2vec techniques. Similar to
relevance feedback, similarity functions can be learned to make
queries and relevant document terms lie close together [57]. Term
embeddings have also been explored to re-weight query terms [68].
Moreover, He et al. [31] proposed using sequence-to-sequence mod-
els to generate query rewrite candidates.

2.3 Query expansion for personal search
Most of the methods described above are most commonly studied
in the web search setting. Recently, personal search (e.g., email
search) attracted the attention of the information retrieval research
community [3, 13, 59]. However, there is very little published work
on query expansion in the personal search setting. Kuzi et al. [41]
were the first to explore the direct application of word2vec [47] to
the content of the personal mailbox of each user, together with a
comparison to other classical expansion methods, e.g., probabilistic
translation models and pseudo-relevance feedback. Other work
on personal search employs classical expansion methods in the
scenario of query auto-completion or spelling correction. In the ab-
sence of query logs, [5, 33] rely on email content to extract related
terms for query auto-completion. In [14], a learning-to-rank model
is trained on features from the query log of an individual user and
users with high demographic similarity. Bhole et al. [6] propose a
spelling correction algorithm that generates corrections directly
from users’ own mail data.

The novelty of this work, as compared to prior research, is that
we design a comprehensive end-to-end framework that specifi-
cally addresses the challenges of data sparsity and anonymity in
email search, and that is able to learn from user interactions. We
formulate our framework in a multi-view learning setting, where
embeddings from multiple user interactions (click, query session,
user distribution) are combined in a unified model.

3 EMBEDDING-BASED SYNONYM
EXPANSION

In this section, we will present embedding-based synonym expan-
sion for email search. Our approach has three steps: learning from
multiple views, label propagation filtering, and candidate ranking.
The general framework of the approach is shown in Figure 1. Since
our main focus in this paper is on the email search scenario, we
shall use the terms email and document interchangeably. However,
it is important to note that the approach discussed here can be
easily generalized to other personal search scenarios.

Note that the privacy constraints of the email search scenario
set two important limitations on the proposed methods. First, we
cannot build personalized models for each user. Therefore, we only
consider global models that are applicable across users in this paper.
Second, our methods operate over sets of k-anonymized n-grams,
rather than complete text sequences, which precludes us from using
sequence learning techniques like recurrent neural networks [32].

N-gram from view 1Query n-gram

Embeddings

Context predictionSimilarity prediction

Label
propagation

filtering

Candidate Generation
from multiple views

View 1

View 2

…

Candidate
ranking

Figure 1: The proposed general framework of synonym ex-
pansion in email search, where terms are learned from dif-
ferent views of the data.

3.1 Learning from different views
Data sparsity is an intrinsic problem of email search [3]. To combat
data sparsity, for each term, we learn multiple representations from
different views, and then synthesize these representations. Specifi-
cally, we use three views: click, query session, and user distribution.
The learning method is similar when modeling each of these views.

3.1.1 Generalization of emails and queries.
Before diving into the details of our methods, we need to point out
that both emails and email search queries contain sensitive private
data: email bodies are not allowed to use, while queries and email
subjects can only be used with special treatment. Furthermore,
email queries and emails do not generalize across users [3]. To
solve these problems, we employ an attribute parameterization
method proposed by Bendersky et al. [3], which enables effective
usage of cross-user interactions in personal search. Specifically, we
first extract all word n-grams (for n = 1, 2, 3) from queries and
email subjects. Among these n-grams, we only keep frequent ones
while dropping infrequent ones. We say an n-gram is frequent
if it appears in query logs of sufficiently many users. Finally, we
represent a query by its longest frequent n-gram and an email by a
very small set of frequent n-grams appearing in the email subject.
For example, the query “bob weekly schedule” will be represented by
“weekly schedule”, and the email with subject “Friday lunch invitation
for Alice!” will be represented by [“friday lunch”, “lunch invitation”].

Formally, the list of frequent query n-grams from the entire
data set is denoted by [q1, ..., qN], where N is the number of fre-
quent query n-grams. The i-th query n-gram qi is composed of
a sequence of words [q1i , ...,q

|qi |
i], where |qi | is the length of qi .

Similarly, the frequent document n-grams from the entire data set
is represented by [d1, ..., dM], whereM is the number of frequent
document n-grams. The j-th document n-gram dj is a sequence of
words [d1j , ...,d

|dj |
j].

3.1.2 Lexical similarity of synonyms in email search.
Unlike the synonyms that one can find in a dictionary, email search
synonyms may often be lexical variations on the original query
n-grams. For example, emails from the H&M clothing company are
often most retrievable by term hm (as the company domain name is
hm.com). Thus, for search purposes, a good synonym for h&m is hm.

Also, quite often we see users misspell their queries. E.g., we would
want to add “Amazon” as a synonym to query “Amazin”, in case
this misspelling is not detected by a standard spelling correction
system.

To account for this lexical similarity, we experimented with
adding edit distance as a feature. However, this does not work well
in practice because machine learning models tend to rely heavily on
edit distance and ignore other signals. We found that a preferable
way is to learn subword information by embedding character n-
grams [7]. In this way, a word is represented by the sum of its word
embedding and character n-gram embeddings. For example if we
consider character n-grams of size 2 and 3, then for the word h&m,
we not only embed h&m itself, but also take into account character
n-grams [h, h&, &m, m , h&, h&m, &m], where denotes word
boundaries. In experiments, we use character n-grams of size from
3 to 6.

3.1.3 Learning from queries and email clicks.
We first describe our model in the view of queries and email clicks.
How to generalize this model into other views will be specified later
on. From a high level, the model is an instantiation of the graph
depicted in Figure 1. One n-gram from a query and one n-gram
from an email are fed into the model, in which they go through an
embedding layer, trained for two tasks: similarity prediction and
context prediction. Below we give a detailed description of the two
tasks.

Similarity prediction. In the context of queries and email clicks,
similarity means whether a query n-gram is similar to a document
n-gram. For a query and document n-gram pair, we set the ground-
truth label as positive if the document n-gram is from a clicked
document of this query, otherwise we set the ground-truth label as
negative. We denote the embedding vector of word i by zi (which
already is a sum of word embeddings and character n-gram embed-
dings as described above). The predicted similarity ŷsk for the k-th
example is:

ŷsk = ϕ(zq1
k
, ..., z

q
|qk |

k
, zd1

k
, ..., z

d
|dk |

k
), (1)

where ŷsk ∈ [0, 1], ϕ(·) is a neural network that takes as input
the embeddings of words from both the query n-gram qk and the
document n-gram dk of the k-th example, zqik is the embedding of
the i-th word qik in qk , and zd jk

is the embedding of the j-th word

d
j
k in dk .
Given a set of training data {qk , dk ,ysk }, where ysk ∈ {0, 1}

denotes no-click or click, we minimize the cross entropy loss:

Ls = −
∑
k

(
ysk log ŷ

s
k + (1 − ysk) log(1 − ŷsk)

)
, (2)

We use a multi-layer perceptron (MLP) as an instantiation of the
neural network, which is fast and effective for short phrases. In our
experiments, embeddings for both a query n-gram and a document
n-gram are simple sum-ups of embeddings of words in the n-gram,
respectively.

Note that more advanced models like recurrent neural networks
[32] are not applicable to our case because of privacy concerns –

we are only able to use a very limited number of frequent n-grams
from email subjects, with no sequence information preserved.

Context prediction. Although similarity prediction learns repre-
sentations of n-grams effectively, it may not learn representations
of individual words equally effectively. This is because with sim-
ilarity prediction, the training signal of one example (document
n-gram, query n-gram) is always backpropagated to multiple words
(unless the n-gram is a unigram). To bring more information into
each word, we employ word2vec-style training [47]. That is, we
embed each query word into the context of clicked documents and
vice versa. Formally, the context ck = {w |w ∈ qk ∨ w ∈ dk } of
the k-th example is a set of words from either the query n-gram
qk or the document n-gram dk where the ground-truth similarity
label ysk is positive. We treat any pairs of words cik and c

j
k from

the context as positive examples and sample negative examples
randomly from the dictionary. Using the binary logistic loss, the
negative log likelihood is:

log
(
1 + exp(−s(zc ik , zc jk

))

)
+

∑
n∈Nck

log
(
1 + exp(s(zc ik , zn))

)
, (3)

where Nck is a set of negative examples sampled from the vocabu-
lary, and the score function s is simply the inner product s(zi , zj) =
z⊺i zj . Denote the logistic loss function by ℓ : x 7→ log(1+ exp(−x)),
we minimize the loss for context prediction:

Lc = −
∑

k,ysk=1

∑
c jk ∈ck

∑
c ik ∈ck

(
ℓ(s(zc ik

, zc jk
))

∑
n∈Nck

ℓ(−s(zc ik
, zn))

)
,

(4)
where k is the k-th training example.

During training, the tasks of similarity prediction and context
prediction are optimized jointly:

L = Ls + Lc , (5)

Summary of the model. Amore detailed model structure is shown
in Figure 2. A word’s embedding is a sum-up of the embeddings of
the word itself and its character n-grams; an n-gram embedding
is a sum-up of the embeddings of its words; a query n-gram and a
document n-gram are concatenated and fed through dense layers
to make a similarity prediction. At the same time, similarly to
word2vec, each word takes turns to predict all the other words as a
context prediction task. The embedding matrix for the two tasks is
shared, so that the embeddings can be simultaneously optimized
by both tasks.

3.1.4 Modeling with multiple views.
The private nature of email search imposes several important data
sparsity challenges [3]. As mentioned in Section 1, we only use
very limited number of k-anonymized n-grams from email search
queries and email subjects. We do not use any information from
the email body, nor any sequence information from email subjects.
Under these strict constraints, the information we can obtain from
the queries and email clicks view is very sparse.

To reduce information sparsity, we extend our embedding model
using a multi-view paradigm [28], which could incorporate addi-
tional data sources into our model. Specifically, we incorporate

Embedding
matrix sharing

Context
word

(order) Randomly sampled words

Word
(hm)

Context prediction
(word2vec-like training)

Word/char-ngram
embeddings

Similarity prediction

!"

Query n-gram
(hm order)

Document n-gram
(h&m order)

Dense layers

+

Figure 2: Model structure using the click view as an example.

two more data sources into our model, and we call them the query
session view and the user distribution view.

Query session view. To build a query session view, we divide a
user’s search query sequence into sessions. Two queries belong
to one session if the time interval between them is smaller than a
threshold (which is set to 5 minutes in our experiments). Though
there are more advanced methods to divide query sequences into
sessions [38], they are difficult to apply in practice in email search,
due to the aforementioned privacy constraints. We also find that our
simple session definition works well for the email search scenario.

Our query session view is built on the assumption that queries
in the same search session are very likely to carry the same search
intent, which could be useful for finding synonyms. To use query
session information in our model, for the similarity prediction task,
when two query n-grams occur in the same search session, the
label is 1; otherwise, the label is 0. For the context prediction task,
each query word is embedded into the context of words from query
n-grams that are from the same session.

User distribution view. The intuition of the user distribution view
comes from recommender system research [51] – similar users issue
similar queries. Following this intuition, we project both users and
queries into an embedding space, and measure their similarity in
this space. Specifically for the similarity prediction task, when an
n-gram is issued as part of a search query by a user, the label is 1;
otherwise, the label is 0. For the context prediction task, we embed
each query word into the context of users who issued this query.

Using user distribution for similarity prediction can be connected
to the Matrix Factorization model [40], which seeks to find a low
rank approximation to the sparse query-user matrix by minimizing
the cross entropy loss on the known elements. The query-user
matrix sets a known element (q,u) to value 1 if a user u issued a
query that contains n-gram q.

We summarize the similarity and context prediction tasks of all
the three views in Table 1.

3.1.5 Candidate generation.
We return a merged list of candidate synonyms from all of the three

views. Specifically, for a query n-gram, the candidate synonyms
are the top K n-grams that lie closest in an embedding space of
each of the views, as its candidate synonyms. The closeness metric
is simply defined by the cosine similarity of the n-grams in the
embedding space.

3.2 Label propagation filtering
Synonyms found by the multi-view embedding models may be
noisy if directly used for query expansion. One problem is that se-
mantically similar n-grams may not necessarily be good synonyms.
E.g., n-grams like Amazon shipping and Ebay shipping are semanti-
cally similar, but adding Ebay shipping as a synonym to Amazon
shipping would most often lead to bad user experiences.

As the problem is caused by misalignment between semantic
similarity and query expansion for search, it can be solved by taking
into account search behavior. Specifically, we can count neighbor
similarity between n-grams in a click weighted graph. Figure 3
shows such a graph built between query n-grams and clicked docu-
ment n-grams. The intuition is that synonyms are closer and share
more neighbors in such a graph.

One option is to add a neighbor-similarity based loss during the
process of embedding learning, like the method proposed in [10].
But as a soft constraint, neighbor-similarity based loss still leads
to noise due to the tradeoff between itself, the similarity prediction
loss and context prediction loss presented earlier. Therefore, we
choose to apply a hard, post embedding training filter based on
neighbor-similarity. For the example shown in Figure 3, Amazon
shipping shares more neighbors with Amazon tracking than with
Ebay shipping, and is therefore closer to Amazon tracking.

Specifically, we use label propagation to measure neighbor sim-
ilarity between two n-grams in the bipartite graph [4, 60]. Label
propagation is a graph-based semi-supervised learning algorithm
that iteratively propagates labels from nodes to neighboring nodes.
To do so, we create an edge and assign edge weight from n-gram a to
n-gram b based on the number of clicks, and we set the initial label
of each node as the n-gram it represents. After label propagation,
each node in the graph will be labeled by a set of propagated labels

Table 1: The summary of different views.

View Similarity Context
Click Subject n-gram is clicked for a query n-gram Embed a query n-gram with the clicked subject

n-grams
Query session Two query n-grams are in the same search session Embed a query n-gram with query n-grams in the

same session
User distribution User issued a query n-gram Embed a query n-gram with the users who issued

this query n-gram

Amazon confirmation
Amazon shipping

Amazon tracking

Query n-grams N-grams from clicked
documents

Ebay shipping

Ebay tracking

Amazon login

Ebay login

Ebay confirmation

Shipping

Figure 3: Noise filtering based on the bipartite graph of
query-clicks.

(in our case, n-grams), together with label weights. This enables us
to measure similarity of two n-grams by cosine similarity of their
labels. Now given a query n-gram and a candidate synonym, we
discard the synonym if similarity is nonpositive.

3.3 Candidate ranking
In order to make the results more robust, we ensemble the results
learned from each view by learning-to-rank techniques. To cre-
ate ground-truth labels for rankers, we randomly sample a set of
query n-grams, and manually label the relevance of their synonym
candidates pooled from all three learning views. The features fed
to a ranker are cosine similarities of embedding vectors of query
n-grams and candidate synonyms from each view, cosine similarity
values based on propagated labels, and two additional properties
for each synonym candidate. The two properties are: (1) the issue
frequency, and (2) the number of emails returned in the past month
to queries containing the synonym candidate. The objective is to
promote the ranking of synonym candidates with higher relevance.

4 EXPERIMENT SETUP
This section describes our setup for the competing methods, the
data sets, and the evaluation metrics. We first describe the setting
for offline experiments, followed by online ones.

4.1 Baselines
For offline experiments, we compare with a list of baselines.

WordNet. In order to compare with synonyms derived from
external resources, we utilize WordNet [29, 45, 58], where “synsets”
can be used as synonyms. Following [1], for n-grams with n > 1,
multiple synonyms are created by substituting one of the words in
the n-gram with one of its synonyms from WordNet.

There might be other external resources where synonyms can
be mined. However, comparing synonyms from general external
resources with synonyms derived from email search is not the fo-
cus of this paper. The reasons are twofold. First, there is a shift in
semantics from email search to general scenario search, resulting
limited applicability of general external resources. Recall the target
example we have in Section 1, where target in email search most
often refers to the store, rather than goal. Second, in our online ex-
periment, we measured improvement over Google’s web synonyms,
which is already a very strong baseline of general synonyms.

DESM. The Dual Embedding Space Model (DESM) [49] trains
an embedding model on the Bing query corpus. The trained em-
beddings are publicly available1. We report the performance of
the IN-OUT configuration of the DESM model, which has the best
performance in the original paper.

Label propagation. Query expansion using query-click bipar-
tite graphs has been proven to be an effective method [2, 16]. As
users do not share their private documents, instead of building
the graph on clicked document, we build the graph between fre-
quent query n-grams and frequent document n-grams, where label
propagation can be performed. This follows the same procedure as
described in Section 3.2.

Clicks, Users, Sessions. Individual embedding models learned
from each view represent strong baselines that utilize the informa-
tion of clicks (or relevance feedback), user interactions, and search
sessions, respectively.

Rank fusion. Instead of using learning-to-rank techniques to
join information from different views, we employ an unsupervised
method – Reciprocal Rank Fusion (RRF) [17], which has been shown
to be very effective in combining the rankings from multiple IR
systems.

4.2 Variants of our methods
To use learning-to-rank methods to ensemble the results from differ-
ent views, we experiment with all methods provided by the RankLib
library. 2 These methods serve as different instantiations of our
synonym expansion framework. We use the names of the learning-
to-rank methods to refer to different instantiations. They are Lamb-
daMART [61], RankBoost [26], MART [27], ListNet [12], Ran-
dom Forests [9], AdaRank [63], Coordinate Ascent [46], and
RankNet [11].

As noted before, we use MLP as our neural network model. Due
to privacy concerns, more advanced models like RNNs [32] are not

1https://www.microsoft.com/en-us/research/project/
dual-embedding-space-model-desm
2https://sourceforge.net/p/lemur/wiki/RankLib/

https://www.microsoft.com/en-us/research/project/dual-embedding-space-model-desm
https://www.microsoft.com/en-us/research/project/dual-embedding-space-model-desm
https://sourceforge.net/p/lemur/wiki/RankLib/

applicable to our case – we can only obtain a few frequent n-grams
from email subjects, without preserving sequence information.

4.3 Data sets
We use one month of search logs obtained from Gmail consumers.
The synonyms found by all methods (except for WordNet and
DESM) are derived from this log. The raw queries contain 1.56
words on average. From each raw query, we extract at most one
frequent n-gram (if there is), whose average number of words is
1.25. The number of n-grams extracted from each email subject is
2.31 on average. As noted before, email body cannot be used.

To judge the relevance of candidate synonyms, some work uses
these synonyms to rerank documents. This is not an ideal option for
us, as we want to evaluate whether the newly found synonyms can
be used to retrieve more relevant documents, rather than reranking
retrieved documents. However due to privacy issues, we cannot
annotate the relevance of newly retrieved documents manually. So
we decided to evaluate the effectiveness of synonyms in the retrieval
system only through online experiments. In the offline setting, we
use human experts to judge the relevance of query-synonym pairs.

The annotation process is as follows. We randomly sample 250
frequent query n-grams, and pool synonyms of these n-grams pro-
posed by all the methods. We first set aside 10 queries (which
contain about 200 query-synonym pairs) for four human experts
to assess rater agreement. We compute Cohen’s kappa between
all pairs of raters, and reach a Kappa score of 0.62105 on average.
Scores that fall between 0.61 and 0.80 are described as substantial
agreement. Since this agreement level is acceptable, we assign each
rater a set of queries so that all queries will be judged by three raters.
We exclude non-English queries and queries without positively la-
beled synonyms, resulting in a final set of 5,859 synonyms (which
belong to 177 unique query n-grams). The label of a synonym is
the sum of binary labels given by each rater. So the label value
ranges from 0 to 3, allowing us to use metrics that consider graded
relevance.

4.4 Evaluation metrics
We use Normalized Discounted Cumulative Gain (NDCG@5) as
our main evaluation metric for offline evaluation [36]. This popular
IR metric considers both the rank of relevant documents in the
predicted order and their graded relevance. To gain further insight
into the behavior of methods, we calculate precision and recall.

4.5 Hyper-parameter setting
Since we are working on an unsupervised task, we do not have an
evaluation set to tune hyper-parameters. Therefore, all the hyper-
parameters are set to their recommended values. The MLP neural
network used in our model uses tanh as the activation function, and
has three dense layers of size 64, 32 and 16, respectively. It optimizes
towards a loss function specified in Eq. 5 using AdaGrad [23] as
the optimizer. The embedding size is set to 64. The initial learning
rate is set to 0.05. For character n-grams, we use n from 3 to 6. For
each query, we select up to top K = 10 candidate synonyms from
each of the competing methods.

4.6 Setup for online experiments
Online experiments allow us to evaluate the true effectiveness of
the found synonyms by observing user click behavior on retrieved
documents. When these (query n−дram, synonym) pairs are served
in live experiments, a synonym will be automatically added to
a query if the query contains the query n-gram. We select two
methods for live experiments – the strongest baseline and our
proposed method in its strongest configuration.

All the live experiments include the synonyms used by Google
Web Search [43]. This is a comprehensive list of synonyms devel-
oped for decades at Google; the synonyms were derived by various
proprietary state-of-the-art algorithms that are based on clicks,
user sessions, etc. This ensures that even if no new synonyms are
added by our methods, synonyms found by web search, if present,
will still be added to a query. This setting (a) guarantees that our
model is competitive in a production setting, and (b) validates our
hypothesis that our synonyms are sufficiently different than those
that could be mined from the web corpus.

We will then have three groups of experiments: (1) the control
group, where only web-based synonyms are added; (2) treatment
group 1, which includes synonyms from the web and 4, 000 top syn-
onyms ordered by the score of the strongest baseline; (3) treatment
group 2 with synonyms from the web and top 4, 000 synonyms
from our proposed method. Each group will be tested separately
on a large amount of traffic of the Gmail Search service.

The metrics used in live experiments are Click-through Rate
(CTR) and Mean Reciprocal Rank (MRR), which are commonly used
metrics for email search [3]. Given N queries, MRR is defined as:

MRR =
1
N

N∑
i=1

1
ranki

(6)

where ranki is the rank of the first clicked document of the i-th
query.

Note that we are limited to a single-click metric (MRR), rather
than a multi-click metric like NDCG. This is due to the nature of
our search setting – Gmail search overlay presents a ranked list of
search results as the user types, and a single click on any of the
results will take the user from the search overlay to the clicked
email, concluding the search session. Hence MRR is used as the key
metric in various studies for Gmail Search [3, 59, 65].

5 EXPERIMENT RESULTS
5.1 Overall performance in offline experiment
We randomly divide our annotated dataset into 10 folds. Each fold is
used once as the test set, with the remaining 9 folds compromising
the training set, and we report the performance averaged over 10
folds. The overall performance is shown in Table 2.

We first focus on NDCG@5, the major metric that compares per-
formance. All configurations of our proposed methods outperform
the baselines. This shows that utilizing labeled data to learn to join
information from different data sources could bring positive effects.
Rank fusion works better than individual models, meaning that
combining information from different views is a successful way to
combat data sparsity in email search. Comparing between methods
Clicks, Users and Sessions, which are embedding models trained on a

Table 2: Overall performance in offline experiment. “*” indi-
cates that NDCG@5 of a method is statistically significantly
better than Rank fusion, according to t-test at levels of 0.01.

NDCG@5 Precision Recall
WordNet 0.3141 0.1880 0.0598
DESM 0.3413 0.2018 0.0837

Label propagation 0.3723 0.3322 0.2831
Clicks 0.5947 0.5338 0.4601
Users 0.5848 0.5586 0.3659

Sessions 0.5089 0.4841 0.1973
Rank fusion 0.6136 0.5224 0.6744

MART 0.6823* 0.5224 0.6744
RankNet 0.6744* 0.5224 0.6744
RankBoost 0.7031* 0.7238 0.4616
AdaRank 0.6826* 0.7779 0.3862

Coordinate Ascent 0.7011* 0.7400 0.6227
LambdaMART 0.6892* 0.7664 0.5042

ListNet 0.6722* 0.5224 0.6744
Random Forests 0.6714* 0.5224 0.6744

single source, Sessions performmuch worse than the other two. This
is mainly due to the sparsity of session information in email search.
Embedding models outperform Label propagation by a large mar-
gin, indicating the effectiveness of our design choice of embedding
models, which optimize for both similarity and context prediction,
and consider syntactic and semantic similarity simultaneously.

Looking at methods using external information, WordNet per-
forms the worst, as it cannot handle new words, misspelled words,
and words that have changed meaning in email search. For exam-
ple, “virago” might be a good synonym for “amazon” in a more
general context. However in email search, recommending “virago
gift” as a synonym for “amazon gift” does not make much sense.
DESM, which is an embedding model trained on Bing query corpus,
performs better than WordNet, but is worse than models trained
specifically on the Email data set. It suggests good candidates when
a query is also frequent in web search. For example, it proposes
“gps” as a synonym for query “garmin”. However, when it comes to
more email related queries, such as “uber receipt”, it often fails to
suggest good synonyms.

Now we turn our attention to precision and recall. Like Rank
fusion, MART gives positive prediction to all examples, thus obtain-
ing the same metric scores. As Rank fusion and learning-to-rank
methods mainly optimize ranking instead of binary relevance, it
will be more interesting to look at other methods. The reasonable
precision but low recall of Sessions confirms our prior statement on
session sparsity. WordNet suffers severely from the recall problem,
as it cannot provide synonyms for new words or misspelled words
that appear in the private corpora.

5.2 Overall performance in online experiment
Many learning-to-rank techniques achieve comparably good per-
formance in offline experiments. We use Coordinate Ascent as our
representative method for online experiments, as its variance of
performance on different folds is smaller than other methods.

Table 3: Overall performance in online experiment. “*” indi-
cates that a method is statistically significantly better over
web synonyms, according to t-test at levels of 0.05. “+”means
that we are measuring the relative improvement over web
synonyms.

MRR CTR
Rank fusion +0.97 +1.56*

Coordinate Ascent +1.32* +1.68*

Baseline. In addition to Rank fusion, which is the strongest
baseline in offline experiments, we also consider the synonyms de-
veloped for Google web search. It is worth noting that Google web
synonyms form a very strong baseline, as it includes a huge num-
ber of synonyms developed over decades in Google using various
proprietary state-of-the-art algorithms.

Table 3 gives the summary of the online experiment, which
shows the relative improvement over Google web synonyms. Both
Rank fusion andCoordinate Ascent are able to outperformweb-based
synonyms. This indicates that synonyms found by our proposed
method are not only reasonable by the offline judgment of human
raters, but are also effective in surfacing more relevant documents
in real settings. It also suggests that web based synonyms are not
sufficient in email search, where models specifically designed for
this scenario are necessary. Comparing between Coordinate Ascent
and Rank fusion, the former has higher gains, especially in terms of
MRR. This again confirms that using learning-to-rank techniques
to combine information from different views is beneficial.

5.3 Feature analysis by ablation study
In order to analyze the importance of individual feature categories,
we perform an offline ablation study. Again we use Coordinate
Ascent for the following analysis due to its smallest variance of
performance on different folds.

Features are categorized into five groups: (1) model score of
Clicks; (2) model score of Users; (3) model score of Sessions; (4)
similarity score of Label propagation, and (5) features related to
synonym properties. Synonym properties are described in detail in
Section 3.3.

In the ablation study, we use a single feature group alone once at
a time, with all other features excluded. The results are displayed in
the first column of Table 4, which show the percentage of relative
performance reduction comparing to the method using all feature
groups. Similarly, we also remove one feature group at one time,
while keeping all other features present. This is shown in the second
column of Table 4.

All numbers in Table 4 being positive indicates that all feature
groups contribute positively to the task. By integrating information
from different sources, our methods are able to alleviate the sparsity
problem in email search. The reduction in the second column of
Table 4 is relatively small, i.e., some information might be shared
across sources. Due to the small values in the second column, the
following analysis will be based on the first column of Table 4.

The performance of Clicks, Users and Sessions are in general
consistent with their performance in Table 2.

Table 4: NDCG@5 reduced by including one feature group
alone or by excluding a feature group.

Feature group Include one group Exclude one group
Clicks 9.44% 1.17%
Users 13.64% 0.78%

Sessions 26.61% 1.92%
Label propagation 16.12% 0.84%

Properties 24.18% 0.75%

Comparing to its poor performance in Table 2, Label propagation
gives a smaller reduction of NDCG. This is because the similar-
ity score of Label propagation itself might promote some irrele-
vant terms as synonyms. However, it also attaches (usually lower)
scores to examples found by embedding-based models. With labels,
learning-to-rank methods learn to find a function that promotes
truly relevant terms to the top.

5.4 Synonym examples
We cannot disclose a comprehensive list of synonyms produced
by our model, due to the proprietary nature of the data. Therefore,
in this section we provide a brief summary of the types of the
generated synonyms, with a few illustrative examples.

Recall that our model uses both word and character level embed-
dings (see Figure 2). Therefore, it is able to produce both syntactic
and semantic synonyms.

As examples of syntactic synonyms, we observe multiple types
of common syntactic modifications: word merge and splits, comple-
tion, and word stemming. As an example, blablacar → bla bla car is
a case of word split. We also observe cases of character substitution,
e.g., whentowork → when2work. Such synonyms can be very useful
when the user cannot recall an exact spelling of a service provider,
a very common scenario in email search.

For semantic synonyms, we find candidates that, while not close
in their surface forms, are highly related to the original query,
and may help in increasing retrieval recall when the user does not
remember the exact wording of the desired email message, e.g., uber
receipt → uber invoice or company recruiting → company interview.

6 CONCLUSION
In this paper, we consider the task of synonym expansion in email
search. Synonym expansion adds related words to search queries,
and can improve recall by retrieving more relevant documents.
Though it has been extensively studied for web search, few studies
have tackled this problem for email search, where unique research
challenges exist. The documents are not shared across users, user
search queries may not be generalizable across users, and the sizes
of the private corpora are much smaller than that of the web corpus.

We propose a solution to address the challenges of synonym
expansion for private corpora.We view the search log frommultiple
perspectives by representing a query by its clicked documents,
a set of users who issued them, and a set of queries that are in
the same search session. A novel embedding-based framework is
then developed to learn and join information from the multiple
sources to obtain optimal synonym candidates. To demonstrate the

effectiveness of the proposed technique, we evaluate our model
using both explicit human ratings as well as a live experiment
on Gmail search, one of the world’s largest email search engines.
The live experiment demonstrates significant improvements over
Google’s state-of-the-art production baseline.

REFERENCES
[1] RaoMuhammadAdeel Nawab, Mark Stevenson, and Paul Clough. 2012. Detecting

text reuse with modified and weighted n-grams. In Proceedings of the First Joint
Conference on Lexical and Computational Semantics-Volume 1: Proceedings of
the main conference and the shared task, and Volume 2: Proceedings of the Sixth
International Workshop on Semantic Evaluation. 54–58.

[2] Eneko Agirre, Oier López de Lacalle, and Aitor Soroa. 2014. Random walks for
knowledge-based word sense disambiguation. Computational Linguistics 40, 1
(2014), 57–84.

[3] Michael Bendersky, Xuanhui Wang, Donald Metzler, and Marc Najork. 2017.
Learning from user interactions in personal search via attribute parameterization.
In Proceedings of the 10th ACM International Conference on Web Search and Data
Mining. 791–799.

[4] Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. 2006. Label Propagation
and Quadratic Criterion. Semi-Supervised Learning (2006).

[5] Sumit Bhatia, Debapriyo Majumdar, and Prasenjit Mitra. 2011. Query Suggestions
in the Absence of Query Logs. In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 795–804.

[6] Abhijit Bhole and Raghavendra Udupa. 2015. On Correcting Misspelled Queries
in Email Search. In Association for the Advancement of Artificial Intelligence.
4266–4267.

[7] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. En-
riching word vectors with subword information. arXiv preprint arXiv:1607.04606
(2016).

[8] Alexey Borisov, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov. 2016. A neu-
ral click model for web search. In Proceedings of the 25th International Conference
on World Wide Web. 531–541.

[9] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[10] Thang D Bui, Sujith Ravi, and Vivek Ramavajjala. 2017. Neural graph machines:

Learning neural networks using graphs. arXiv preprint arXiv:1703.04818 (2017).
[11] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,

and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd International Conference on Machine Learning. 89–96.

[12] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
International Conference on Machine Learning. 129–136.

[13] David Carmel, Guy Halawi, Liane Lewin-Eytan, Yoelle Maarek, and Ariel Raviv.
2015. Rank by time or by relevance?: Revisiting email search. In Proceedings of the
24th ACM International Conference on Information and Knowledge Management.
283–292.

[14] David Carmel, Liane Lewin-Eytan, Alex Libov, Yoelle Maarek, and Ariel Raviv.
2017. The demographics of mail search and their application to query suggestion.
In Proceedings of the 26th International Conference onWorldWideWeb. 1541–1549.

[15] Claudio Carpineto and Giovanni Romano. 2012. A survey of automatic query
expansion in information retrieval. ACM Computing Surveys (CSUR) (2012),
1:1–1:50.

[16] Kevyn Collins-Thompson and Jamie Callan. 2005. Query expansion using ran-
dom walk models. In Proceedings of the 14th ACM International Conference on
Information and Knowledge Management. 704–711.

[17] Gordon V Cormack, Charles LA Clarke, and Stefan Buettcher. 2009. Reciprocal
rank fusion outperforms condorcet and individual rank learning methods. In
Proceedings of the 32nd international ACM SIGIR Conference on Research and
Development in Information Retrieval. 758–759.

[18] W Bruce Croft and David J Harper. 1979. Using probabilistic models of document
retrieval without relevance information. Journal of Documentation (1979), 285–
295.

[19] W. B. Croft and D. J. Harper. 1988. Document Retrieval Systems. Taylor Graham
Publishing, Chapter Using Probabilistic Models of Document Retrieval Without
Relevance Information, 161–171.

[20] Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying Ma. 2003. Query expansion
by mining user logs. IEEE Transactions on Knowledge and Data Engineering 15, 4
(2003), 829–839.

[21] Dotan Di Castro, Liane Lewin-Eytan, Yoelle Maarek, Ran Wolff, and Eyal Zohar.
2016. Enforcing k-anonymity in web mail auditing. In Proceedings of the 9th ACM
International Conference on Web Search and Data Mining. 327–336.

[22] Fernando Diaz, Bhaskar Mitra, and Nick Craswell. 2016. Query Expansion with
Locally-Trained Word Embeddings. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics. 1929–1932.

[23] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research 12, Jul (2011), 2121–2159.

[24] Efthimis N Efthimiadis. 1996. Query Expansion. Annual Review of Information
Science and Technology (ARIST) (1996), 121–87.

[25] Bruno M Fonseca, Paulo Golgher, Bruno Pôssas, Berthier Ribeiro-Neto, and Nivio
Ziviani. 2005. Concept-based interactive query expansion. In Proceedings of the
14th ACM International Conference on Information and Knowledge Management.
696–703.

[26] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. 2003. An efficient
boosting algorithm for combining preferences. Journal of Machine Learning
Research 4, Nov (2003), 933–969.

[27] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of Statistics (2001), 1189–1232.

[28] Yunchao Gong, Qifa Ke, Michael Isard, and Svetlana Lazebnik. 2014. A multi-
view embedding space for modeling internet images, tags, and their semantics.
International Journal of Computer Vision 106 (2014), 210–233.

[29] Zhiguo Gong, Chan Wa Cheang, et al. 2006. Multi-term web query expansion
using WordNet. In International Conference on Database and Expert Systems
Applications. 379–388.

[30] Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavljevic, Fabrizio Silvestri, and
Narayan Bhamidipati. 2015. Context-and content-aware embeddings for query
rewriting in sponsored search. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 383–392.

[31] Yunlong He, Jiliang Tang, Hua Ouyang, Changsung Kang, Dawei Yin, and Yi
Chang. 2016. Learning to Rewrite Queries. In Proceedings of the 25th ACM
International Conference on Information and Knowledge Management. 1443–1452.

[32] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[33] Michal Horovitz, Liane Lewin-Eytan, Alex Libov, Yoelle Maarek, and Ariel Raviv.
2017. Mailbox-Based vs. Log-Based Query Completion for Mail Search. In Proceed-
ings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval. 937–940.

[34] Chien-Kang Huang, Lee-Feng Chien, and Yen-Jen Oyang. 2003. Relevant term
suggestion in interactive web search based on contextual information in query
session logs. Journal of the Association for Information Science and Technology 54
(2003), 638–649.

[35] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM International Conference on
Information & Knowledge Management. 2333–2338.

[36] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems 20, 4 (2002), 422–446.

[37] Karen Sparck Jones. 1971. Automatic keyword classification for information
retrieval. Archon Books (1971).

[38] Rosie Jones and Kristina Lisa Klinkner. 2008. Beyond the Session Timeout: Auto-
matic Hierarchical Segmentation of Search Topics in Query Logs. In Proceedings
of the 17th ACM Conference on Information and Knowledge Management. 699–708.

[39] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. 2006. Generating
query substitutions. In Proceedings of the 15th International Conference on World
Wide Web. 387–396.

[40] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer (2009), 30–37.

[41] Saar Kuzi, David Carmel, Alex Libov, and Ariel Raviv. 2017. Query Expansion
for Email Search. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 849–852.

[42] Saar Kuzi, Anna Shtok, and Oren Kurland. 2016. Query expansion using word
embeddings. In Proceedings of the 25th ACM International on Conference on Infor-
mation and Knowledge Management. 1929–1932.

[43] John Lamping and Steven Baker. 2009. Determining query term synonyms within
query context. US Patent 7,636,714.

[44] Xiujun Li, Chenlei Guo, Wei Chu, Ye-Yi Wang, and Jude Shavlik. 2014. Deep
learning powered in-session contextual ranking using clickthrough data. In In
Proc. of Conference on Neural Information Processing Systems.

[45] Rila Mandala, Tokunaga Takenobu, and Tanaka Hozumi. 1998. The use of Word-
Net in information retrieval. Usage of WordNet in Natural Language Processing
Systems (1998).

[46] Donald Metzler and W Bruce Croft. 2007. Linear feature-based models for
information retrieval. Information Retrieval 10, 3 (2007), 257–274.

[47] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[48] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to match using
local and distributed representations of text for web search. In Proceedings of the
26th International Conference on World Wide Web. 1291–1299.

[49] Bhaskar Mitra, Eric Nalisnick, Nick Craswell, and Rich Caruana. 2016. A dual
embedding space model for document ranking. arXiv preprint arXiv:1602.01137
(2016).

[50] Yonggang Qiu and Hans-Peter Frei. 1993. Concept based query expansion. In
Proceedings of the 16th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. 160–169.

[51] Paul Resnick and Hal R Varian. 1997. Recommender systems. Commun. ACM 40,
3 (1997), 56–58.

[52] Stefan Riezler, Alexander Vasserman, Ioannis Tsochantaridis, Vibhu Mittal, and
Yi Liu. 2007. Statistical Machine Translation for Query Expansion in Answer
Retrieval. In Proceedings of the 45th Annual Meeting of the Association for Compu-
tational Linguistics. 464–471.

[53] Joseph John Rocchio. 1971. Relevance feedback in information retrieval. The
SMART retrieval system: experiments in automatic document processing (1971).

[54] Dwaipayan Roy, Debjyoti Paul, Mandar Mitra, and Utpal Garain. 2016. Using
word embeddings for automatic query expansion. SIGIR Workshop on Neural
Information Retrieval (2016).

[55] Gerard Salton and Chris Buckley. 1997. Readings in Information Retrieval. Chap-
ter Improving Retrieval Performance by Relevance Feedback, 355–364.

[56] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
A latent semantic model with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM International Conference on Information
and Knowledge Management. 101–110.

[57] Alessandro Sordoni, Yoshua Bengio, and Jian-Yun Nie. 2014. Learning Con-
cept Embeddings for Query Expansion by Quantum Entropy Minimization. In
Association for the Advancement of Artificial Intelligence.

[58] Ellen M Voorhees. 1994. Query expansion using lexical-semantic relations. In
Proceedings of the 17th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. 61–69.

[59] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc
Najork. 2018. Position Bias Estimation for Unbiased Learning to Rank in Personal
Search. In Proceedings of the 11th ACM International Conference on Web Search
and Data Mining. 610–618.

[60] Yan Wang, Rongrong Ji, and Shih-Fu Chang. 2013. Label propagation from
imagenet to 3d point clouds. In 2013 IEEE Conference on Computer Vision and
Pattern Recognition. 3135–3142.

[61] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao. 2010.
Adapting boosting for information retrieval measures. Information Retrieval 13,
3 (2010), 254–270.

[62] Jinxi Xu and W Bruce Croft. 2000. Improving the effectiveness of information
retrieval with local context analysis. ACM Transactions on Information Systems
(2000), 79–112.

[63] Jun Xu and Hang Li. 2007. Adarank: a boosting algorithm for information
retrieval. In Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. 391–398.

[64] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang,
Jianhui Chen, Changsung Kang, Hongbo Deng, Chikashi Nobata, et al. 2016.
Ranking relevance in yahoo search. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 323–332.

[65] Hamed Zamani, Michael Bendersky, Xuanhui Wang, and Mingyang Zhang. 2017.
Situational Context for Ranking in Personal Search. In Proceedings of the 26th
International Conference on World Wide Web. 1531–1540.

[66] Hamed Zamani and W Bruce Croft. 2016. Embedding-based query language
models. In Proceedings of the 2016 ACM International Conference on the Theory of
Information Retrieval. 147–156.

[67] Hamed Zamani and W Bruce Croft. 2017. Relevance-based Word Embedding.
In Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 505–514.

[68] Guoqing Zheng and Jamie Callan. 2015. Learning to reweight terms with dis-
tributed representations. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 575–584.

	Abstract
	1 introduction
	2 Related work
	2.1 Query expansion for general search applications
	2.2 Deep learning for query expansion
	2.3 Query expansion for personal search

	3 Embedding-based synonym expansion
	3.1 Learning from different views
	3.2 Label propagation filtering
	3.3 Candidate ranking

	4 Experiment setup
	4.1 Baselines
	4.2 Variants of our methods
	4.3 Data sets
	4.4 Evaluation metrics
	4.5 Hyper-parameter setting
	4.6 Setup for online experiments

	5 Experiment results
	5.1 Overall performance in offline experiment
	5.2 Overall performance in online experiment
	5.3 Feature analysis by ablation study
	5.4 Synonym examples

	6 Conclusion
	References

