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ABSTRACT
This paper describes JCAT, a web-based algorithm anima-
tion system. JCAT combines the expressive power of web
pages for publishing passive multimedia content with a full-
fledged interactive algorithm animation system that includes
a rich set of libraries for creating 2D and 3D animations.
The paper describes in detail how an algorithm animation
is authored, and it presents a sample of existing animations.

1. INTRODUCTION
Algorithm animation is concerned with illustrating the

behavior of a program by visualizing the fundamental oper-
ations of the program as it runs. Such displays have proven
to be quite useful for education and for research in the design
and analysis of algorithms.
The 1970’s saw a number of short films depicting the oper-

ations of algorithms at an abstract level [12, 3], culminating
in Baecker and Sherman’s seminal movie “Sorting out Sort-
ing” [1]. The film was computer-generated, but at the time,
it was not possible to do this in real time. Although “Sort-
ing out Sorting” runs for only 30 minutes, it took over three
years to make.
Baecker’s work coupled with advances in graphics hard-

ware inspired BALSA, the first real-time, interactive algo-
rithm animation system [4]. BALSA introduced the inter-
esting event paradigm, the concept of separating the algo-
rithm from its animation, and instrumenting the algorithm
with procedure calls indicating interesting events (e.g. the
swap of two elements in an array) that drive the animation.
BALSA too was constrained by the computational power
and the graphics hardware available at the time; its visual-
izations were monochrome, and interesting events triggered
abrupt changes in the display.
As hardware advanced, so did the capabilities of algorithm

animation systems. Animus [10] pioneered smooth anima-
tions; TANGO [13] introduced the path-transition paradigm,
an elegant high-level framework for specifying such anima-
tions. Zeus [6] added color graphics and computer-generated
sounds to the repertoire available to the animator. Finally,
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Polka-3D [14] and Zeus3D [7] explored the use of 3D graph-
ics for algorithm animation.
The advent of the web triggered the development of a se-

ries of web-based algorithm animation systems. The Mocha
system [2] used a client-server approach: Users point a web
browser at a web page containing a Java applet. The ap-
plet starts an algorithm on a remote server; the algorithm
transmits interesting events via TCP to the applet, and the
applet generates the appropriate animations. The CAT sys-
tem [8], on the other hand, ran both the algorithm and the
animations as applets on the user’s web browser; these ap-
plets were written in a non-standard scripting language. The
follow-on system JCAT [9] replaced the non-standard script-
ing language with Java. The most recent version of JCAT
offers the full set of tools provided by our previous algorithm
animation systems to the animator, including high-level 2D
and 3D animation libraries and support for algorithm aural-
ization.
The interested reader is referred to [15] for a comprehen-

sive coverage of algorithm animation systems.

2. WRITING A JCAT ANIMATION
This section describes how to write an animation using the

JCAT system. It does so by fleshing out an animation of the
first-fit binpacking algorithm, the “hello world” example of
algorithm animation. The binpacking problem is as follows:
Given a set of blocks each weighing up to 1 unit, group the
blocks into the fewest bins possible, where each bin can hold
up to 1 unit. The “online” version of this problem has the
additional restriction that each block must be processed as
it is encountered in the input stream. Although the optimal
solution to this problem is NP-complete, a “pretty good”
packing can be accomplished by examining the bins from left
to right and putting the block in the first bin encountered
that has sufficient room. This algorithm is called first-fit
binpacking.
Figure 1 shows a JCAT animation of binpacking. The top-

left applet is the control panel. It allows the user to start
and stop the algorithm, advance the algorithm step-by-step,
and adjust the speed of the animation. The control panel
is algorithm-independent; this applet is used to control all
algorithms in the JCAT system.
The applet at the top-right is an algorithm input panel

that is used for specifying input to the algorithm. This ap-
plet is specific to each algorithm. The algorithm input panel
used for binpacking algorithms allows users to specify the
number of bins available for packing, the number of blocks
to pack, and the range of possible weights of each block.



Figure 1: Animation of the binpacking algorithm

The three applets below the first two are views. The large
applet on the left is the “probing view”; it shows each block
as a vertical bar whose height reflects the weight of the block.
As the algorithm examines the bins, the new block is graph-
ically shown on the bin being examined. Once a bin is found
with enough room for the new block, the color of the new
block changes from gray to blue. The smaller applet at the
lower-right is the “packing view”; it shows how the blocks
have been arranged into the bins. Color is used to redun-
dantly encode the weight of each block. The mid-right ap-
plet is a “transcript view”; it shows a textual log of the
interesting events generated by the algorithm.
The framework for animating algorithms follows the model

pioneered by BALSA [4]: Strategically important points of
an algorithm are annotated with procedure calls that gen-
erate interesting events. These events are reported to an
event dispatcher, which in turn forwards them to all reg-
istered views. Each view may respond to each interesting
event by drawing appropriate images.
The task of preparing a JCAT animation consists of four

parts: defining the interesting events for the algorithm; im-
plementing the algorithm and annotating it with the events;
implementing one or more views; and finally, creating Web
pages that make use of the algorithm and views. The Web
pages are prepared using HTML; the events, algorithm, and
views are written in Java. The rest of this section shows how
the binpacking animations seen before were implemented.

2.1 Defining the interesting events
The set of interesting events is specified as a Java inter-

face. Here are the interesting events for the first-fit binpack-
ing algorithm:

public interface Binpacking {
void setup(int numBins, int numBlocks);
void newBlock(double wt);
void probe(int bin);
void pack();

}

The setup event is called once when the algorithm starts,
to communicate to the views how many blocks will be pro-
cessed and how many bins are available. The newBlock event
is called each time the algorithm encounters a new block,
whose weight is specified as the parameter. The probe event
is called each time the algorithm checks if the new block can
be packed into the bin specified as the parameter. The pack
event is called to indicate that the last bin probed is where
the new block will be placed.
JCAT comes with a preprocessor called CATalyst that

takes the interesting event interface and derives abstract
classes for the algorithm and the views. The classes gen-
erated by CATalyst, along with the JCAT base classes, pro-
vide all the communication mechanisms between algorithms
and views. CATalyst also generates algorithm-specific tran-
script views and code views (described below).

2.2 Annotating the Algorithm
The algorithm is implemented by an applet that appears

as the algorithm input panel. It is a subclass of the abstract
algorithm class generated by CATalyst, which is a subclass
of JCAT’s generic algorithm class, which in turn is a subclass
of the standard Java applet class.
The following code shows the applet that implements first-

fit binpacking. The animation author implements the algo-
rithm by subclassing the algorithm class generated by CAT-
alyst (in this case, BinpackingAlg) and overriding an abstract
method called algorithm with the algorithm in question. The
algorithm code is annotated with calls to interesting event
methods (marked by comments); these methods are pro-
vided by BinpackingAlg. Each of these methods forwards
interesting events to the control panel, which in turn for-
wards them to the views.

public class FirstFit extends BinpackingAlg {
EntryField binFld, blockFld, minFld, maxFld;

public void init() { ... }

protected void algorithm() {
int numBins = binFld.getInt();
int numBlocks = blockFld.getInt();
double min = minFld.getDouble();
double max = maxFld.getDouble();
setup(numBins, numBlocks); // interesting event
double totals[] = new double[numBins];
for (int b = 0; b < numBlocks; b++) {
double wt = Math.random()*(max-min)+min;
newBlock(wt); // interesting event
int bin;
for (bin = 0; bin < numBins; bin++) {

probe(bin); // interesting event
if (totals[bin] + wt <= 1.0) break;

}
if (bin == numBins) break;
totals[bin] += wt;
pack(); // interesting event

}
}

}

Since FirstFit is a subclass of java.applet.Applet, it in-



herits various methods that are invoked when the applet
has been loaded, started, stopped, and discarded. In this
example, the init method (elided) creates the user interface
elements of the algorithm input panel seen at the top-right
of Figure 1.

2.3 Implementing a View
A view is a subclass of the abstract view class generated by

CATalyst (e.g., BinpackingView), which in turn is a subclass
of java.applet.Applet. The abstract view class generated
by CATalyst defines an empty method for each interesting
event. The animation author creates a new view by subclass-
ing the abstract view class and overriding those methods for
which animation effects are desired.
The actual code for the probing view shown in the previ-

ous screen images is as follows:

public class ProbingView extends BinpackingView {
GP gp = new GP();
Vertex v;
double currWt;
double totals[];
char id;
int lastProbe;

public void init() {
super.init();
add(gp);

}
public void setup(int numBins, int numBlocks) {
id = ’A’;
totals = new double[numBins];
gp.clear();
gp.setWorld(-2.0, numBins + 1.0, 2.0, 0.0);
gp.redisplay();

}
public void newBlock(double wt) {
v = new Vertex(gp);
v.setSize(1.0, wt);
v.setPosition(-1.0, wt / 2.0);
v.setColor(Color.darkGray);
v.setBorder(0.01);
v.setLabelColor(Color.white);
v.setLabel(Character.toString(id++));
gp.redisplay();
currWt = wt;

}
public void probe(int bin) {
v.move(bin, totals[bin] + currWt / 2.0);
gp.animate(1.0);
lastProbe = bin;

}
public void pack() {
totals[lastProbe] += currWt;
v.setColor(Color.blue);
gp.redisplay();

}
}

As mentioned, views of an algorithm implement the meth-
ods that are defined in the interesting events interface.
The body of each method is responsible for updating the

screen in a way that is meaningful for the view. For example,
the probe method smoothly slides the rectangle representing
the block being processed from its current position to a po-
sition on the bin being probed, specified as a parameter to
the event. In addition, it records which bin is being probed
so the pack event can update an array that maintains the
total weight of the blocks in each bin.
The class GP is a rich, high-level 2D animation package

Figure 2: Animation of Shaker sort

based on the metaphor of a graph consisting of vertices and
edges. Each vertex has various attributes associated with it,
such as position, size, shape, color, border width, and label.
A vertex can be surrounded by colored highlights, and a
highlight can be moved between vertices. An edge connects
two vertices and has attributes such as color, thickness, cur-
vature, and arrowheads. The GP package also provides col-
ored polygons, specified by a sequence of vertices. Vertices
can be repositioned, and such movement can be shown by
smooth animation. When a vertex is moved, all highlights,
edges, and polygons associated with it are smoothly moved
as well. GP was inspired by Stasko’s TANGO system [13].

3. A GALLERY OF JCAT ANIMATIONS
This section describes some some of the animations we

have built using the JCAT system. In the process, it de-
scribes a number of algorithm-independent features provided
by JCAT, such as code views and storyboard view.

3.1 Shaker sort
Figure 2 shows an animation of Shaker sort, one of the

many array-based sorting algorithms. The figure shows four
views of the algorithm; the control panel and the input panel
are scrolled out of sight.
The top-left view is the “sticks view”, a common 2D rep-

resentation of an array of elements: each stick represents an
element in the array, and the height of the stick is propor-
tional to the value of the element. Whenever two elements
of the array are exchanged, the corresponding sticks trade
places in a smooth animation. When the array is completely
sorted, the sticks will be arranged from short to tall, from
left to right.
The top-right view is the “chips view”, which captures a

history of the contents of the array being sorted. A chip
represents an element of the array. As in the “sticks view”,
the horizontal position of a chip indicates its position in
the array. However, values of array elements are expressed



Figure 3: Animation of Heapsort

through color rather than height. This frees up one dimen-
sion, which has been used to capture a history of the al-
gorithm’s execution. Whenever the algorithm completes an
iteration of its outer loop, a copy of the topmost row of
chips is drawn on top. Changes to array elements affect the
chips in the topmost row only. When the array is sorted,
the topmost row will show the color spectrum from red to
violet.
The lower-left view is a 3D version of the sticks view. As in

the 2D view, exchanging two elements in the array is shown
with a smooth animation of the corresponding sticks trading
places. Whenever the algorithm completes an iteration of its
outer loop, the frontmost row of sticks is duplicated. As the
algorithm continues, changes are made to the frontmost row
of sticks only. In this way, the 3D sticks view combines the
elegance of the sticks view with the chips view’s capacity for
capturing history.
The lower-right view is a variation of the 3D sticks view.

In this view, the current contents of the array are displayed
by the row of sticks in the rear. After each iteration of the
main loop, the sticks stamp their color onto a plane, which
is then pulled forward. Thus, the history plane looks exactly
like the chips view.

3.2 Heapsort
Figure 3 shows an animation of Heapsort. Heapsort works

in two phases: First, it arranges the elements being sorted
into a heap, a complete binary tree in which the value of each
node is larger than the values of each of its children. Second,
it repeatedly removes the root (i.e., the largest value among
the elements) from the heap, sets it aside, and reestablishes
the heap property, doing so until the heap is empty. Heaps
can be implemented as arrays by placing the root node at
position 1, and for each node at position i, placing its left
child at position 2i and its right child at position 2i+1.
The web page contains six applets: the control panel; the

algorithm input panel; a “transcript view;” a “tree view”
that shows the heap as a binary tree; a “sticks view” that
shows how the heap is implemented as an array; and a 3D

Figure 4: Animation of Dijkstra’s shortest-path al-
gorithm

view that combines the tree view and the sticks views. In the
tree view and sticks view, color is used to distinguish which
elements are on the heap and which have been removed.
The 3D view shows a binary tree whose nodes are rods

that extend in the z-dimension. As in the sticks view, the
length of each rod is proportional to the value of the cor-
responding heap element. In addition, the rods are color-
coded in the same way as in the chips view. It might ap-
pear as if color were redundant since the values are already
encoded by their lengths of the rods; however, it is quite
helpful when the tree is viewed from the front. Siblings in
the binary tree are not drawn at the same y value; rather,
right nodes are slightly lower than their left siblings. More
precisely, the y position of each rod corresponds to the index
of the corresponding array entry. The effect of this layout is
that the tree, when viewed from the side, shows the familiar
sticks view (but rotated 90 degrees).
The 3D view does not contain any more information than

is contained in the two 2D views. However, integrating
the two 2D views requires cognitive effort, while obtaining
the same information from the single 3D view leverages the
viewer’s perceptual system and thereby lessons the cognitive
load.

3.3 Shortest-Path
Figure 4 shows an animation of Dijkstra’s shortest-path

algorithm. Given a directed graph with weighted edges, this
algorithm finds the shortest path from a source vertex to all
other vertices. The length of a path is defined to be the sum
of the weights of the edges along the path.
To do this, Dijkstra’s algorithm associates a cost with each

vertex, indicating the length of the shortest path found so
far from the source to this vertex. Initially, this cost will be
infinite. It also maintains a bit per vertex indicating whether
the vertex has been processed or not. The algorithm then



Figure 5: Animation of the package-wrapping algo-
rithm

repeatedly selects the unprocessed vertex u with the mini-
mal cost, marks it as processed, and lowers the cost of each
neighboring vertex v to the cost of u plus the weight of the
edge (u, v), provided that this value is indeed lower than the
current cost of v.
In the view, each vertex is shown as a disk, and the cur-

rent cost of the vertex is represented by as a green column
protruding from the disk whose height is proportional to
the cost. Edges are shown as arrows. Each edge leaves a
vertex at height 0, and enters the other vertex at a height
proportional to its weight. Unprocessed edges are shown in
grey, the edge that is currently being examined is shown in
yellow, and processed edges are shown in red.
When the algorithm marks a vertex as processed, the color

of the vertex in the view is changed from gray to red. When
the algorithm considers an edge from u to v, the edge is
highlighted in yellow, and lifted by the current cost of u.
Hence, after the lifting is complete, the startpoint of the
edge coincides with the tip of the green column above u.
If the endpoint of the lifted edge is lower that the green
column above v, this column is lowered to the endpoint,
reflecting the lowering of the cost of v by the algorithm, and
the color of the edge changes from yellow to red. Otherwise,
the yellow edge simply disappears. When the algorithm is
finished, the graph has been replaced by the shortest-path
tree, and the columns above each vertex reflect the length
of the shortest path from the source to that vertex.

Figure 6: Animation of construction of a 2D tree

3.4 Package-Wrapping
Figure 5 shows an animation of the package-wrapping al-

gorithm for computing the convex hull of a set of points in
the plane. The figure contains the control panel, the input
panel, and four views of the algorithm.
The view at the top-right is a “code view”; it shows a

pseudo-code representation of the algorithm, with a high-
light on the line that is currently being executed. The
pseudo code was provided by the animator, but the code
view applet was created automatically by the CATalyst pre-
processor.
The lower-left view is the “geometry view”; it shows how

the segments of the hull are wrapped around the points in
the plane.
The view in the middle is a “storyboard view”. It shows

snapshots of the geometry view taken at key points in time.
The rightmost frame in the storyboard view is “live”; it
shows the same animations as the full-sized geometry view.
When a key event occurs (in this case, when a new point
becomes part of the convex hull), the frame freezes, and a
new live frame appears to its right.
The lower-right view shows the main data structure of the

algorithm, namely, an array of points. The points are shown
as squares, the array is represented by a row of squares. The
view captures a history of how the array evolves by taking
snapshots of the row representing the array and arranging
the snapshots vertically, similar in spirit to the chips view
used in the animation of Shaker sort.

3.5 Construction of a 2D Tree
Figure 6 shows an animation of the construction of a 2D

tree, a space-partitioning tree that contains points in the
plane. This data structure provides support for efficient



range searching. A 2D tree is essentially a binary search tree
with 2D points in the nodes, using the x and y coordinates
of the points as keys in a strictly alternating sequence.
When viewed from the top, the scene shows the points in

the plane. The walls indicate the partitioning imposed by
nodes in the 2D tree. The large blue wall corresponds to
the root of the tree; the two cyan walls correspond to its
children, and so on. The edges of the 2D tree are displayed
as black lines. This representation of a tree resembles the
standard layout of a spanning tree, but it does not reveal
parent-child relationships. When viewed from the side, the
space partitioning tree has the standard binary tree layout,
where parent nodes are located above their children. The
drawback of this viewing angle is that we can no longer see
the points in the plane. When viewed from an oblique angle
(as in Figure 6), the visualization simultaneously shows the
points in the plane, the walls partitioning the plane that are
induced by the nodes of the 2D tree, and the 2D tree.
Arguably, it is disconcerting to see the edges of the tree

overlapping; moreover, the left and right children are not
necessarily drawn to the left and right of their parent! How-
ever, we found that when the tree is interactively rotated
about the z-axis, it appears to have depth. The rotation
provides the viewer with the visual cues needed to under-
stand the overlaps and perceive the tree’s depth. This ex-
ample demonstrates that it is crucial for the viewers of 3D
animations to be able to interactively manipulate the scene.

4. CONCLUSION
This paper describes JCAT, a Web-based algorithm an-

imation system. JCAT augments the expressive power of
web pages (which can contain passive multimedia such as
text, images, or movies) with interactive animations of al-
gorithms.
Unlike traditional algorithm animation systems, JCAT

does not require any software installation. Animations are
immediately accessible simply by pointing a standard Web
browser to a page containing an animation. At first blush,
this might seem a minor detail, but we believe it makes a
significant difference. Having built several stand-alone sys-
tems, we learned that installation overhead does deter many
potential users. By making the installation completely au-
tomatic, we create a seamless user experience. We believe
that this technology will expose a much wider audience to
algorithm animation.
You can experience the examples shown in this paper by

visiting http://research.compaq.com/SRC/JCAT.
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